
Find the approximate value of ${\tan ^{ - 1}}\left( {1.001} \right)$
A. 0.6655
B. 0.9358
C. 0.5555
D. 0.7855
Answer
600k+ views
Hint: In order to solve this question we will use the property of differentiation of function which can be expressed as $f(x + \Delta x) = f\left( x \right) + \Delta f'\left( x \right)$ where $\left( {\Delta x < < < x} \right)$ and then by simplifying it we will get the answer.
Complete step-by-step answer:
Let $f\left( y \right) = {\tan ^{ - 1}}y$
Differentiating $f\left( y \right)$ w.r.t $y$ we have
As we know that \[\left[ {\dfrac{{d\left( {{{\tan }^{ - 1}}y} \right)}}{{dx}} = \dfrac{1}{{1 + {y^2}}}} \right]\]
$ \Rightarrow \dfrac{{df\left( y \right)}}{{dx}} = \dfrac{1}{{1 + {y^2}}}...................\left( 1 \right)$
Let $y = 1.001 = x + \Delta x$
Here,
$x = 1$
And $\Delta x = .001$
Substituting the values of x in above equations
Therefore, $f\left( x \right) = f\left( 1 \right) = {\tan ^{ - 1}}1 = \dfrac{\pi }{4}{\text{ }}$
From equation (1)
Similarly, $f'\left( x \right) = f'\left( 1 \right) = \dfrac{1}{{1 + {1^2}}} = \dfrac{1}{2}$
Now, from Taylor series expansion
$
f\left( y \right) = f\left( {x + \Delta x} \right) = f\left( x \right) + \Delta x.f'\left( x \right) \\
{\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {x + \Delta x} \right) = {\tan ^{ - 1}}x + \Delta x.\left( {\dfrac{1}{{1 + {x^2}}}} \right) \\
\therefore {\tan ^{ - 1}}1.001 = {\tan ^{ - 1}}\left( {1 + 0.001} \right) = {\tan ^{ - 1}}1 + \left( {0.001} \right).{\tan ^{ - 1}}1 \\
\Rightarrow {\tan ^{ - 1}}1.001 = \dfrac{\pi }{4} + 0.001\left( {\dfrac{1}{2}} \right) \\
\Rightarrow {\tan ^{ - 1}}1.001 = \dfrac{\pi }{4} + 0.0005 = 0.7855 \\
$
Hence, the approximate value of ${\tan ^{ - 1}}\left( {1.001} \right)$ is $0.7855$ and the correct option is “D”.
Note: In order to solve these types of questions, we must have a good concept of differentiation of trigonometric functions as well as inverse trigonometric functions. The above question is an application of differentiation. In the above question we used the Taylor series expansion to calculate the value of a given function. Differentiation can also be used to find the maxima and minima of a function.
Complete step-by-step answer:
Let $f\left( y \right) = {\tan ^{ - 1}}y$
Differentiating $f\left( y \right)$ w.r.t $y$ we have
As we know that \[\left[ {\dfrac{{d\left( {{{\tan }^{ - 1}}y} \right)}}{{dx}} = \dfrac{1}{{1 + {y^2}}}} \right]\]
$ \Rightarrow \dfrac{{df\left( y \right)}}{{dx}} = \dfrac{1}{{1 + {y^2}}}...................\left( 1 \right)$
Let $y = 1.001 = x + \Delta x$
Here,
$x = 1$
And $\Delta x = .001$
Substituting the values of x in above equations
Therefore, $f\left( x \right) = f\left( 1 \right) = {\tan ^{ - 1}}1 = \dfrac{\pi }{4}{\text{ }}$
From equation (1)
Similarly, $f'\left( x \right) = f'\left( 1 \right) = \dfrac{1}{{1 + {1^2}}} = \dfrac{1}{2}$
Now, from Taylor series expansion
$
f\left( y \right) = f\left( {x + \Delta x} \right) = f\left( x \right) + \Delta x.f'\left( x \right) \\
{\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {x + \Delta x} \right) = {\tan ^{ - 1}}x + \Delta x.\left( {\dfrac{1}{{1 + {x^2}}}} \right) \\
\therefore {\tan ^{ - 1}}1.001 = {\tan ^{ - 1}}\left( {1 + 0.001} \right) = {\tan ^{ - 1}}1 + \left( {0.001} \right).{\tan ^{ - 1}}1 \\
\Rightarrow {\tan ^{ - 1}}1.001 = \dfrac{\pi }{4} + 0.001\left( {\dfrac{1}{2}} \right) \\
\Rightarrow {\tan ^{ - 1}}1.001 = \dfrac{\pi }{4} + 0.0005 = 0.7855 \\
$
Hence, the approximate value of ${\tan ^{ - 1}}\left( {1.001} \right)$ is $0.7855$ and the correct option is “D”.
Note: In order to solve these types of questions, we must have a good concept of differentiation of trigonometric functions as well as inverse trigonometric functions. The above question is an application of differentiation. In the above question we used the Taylor series expansion to calculate the value of a given function. Differentiation can also be used to find the maxima and minima of a function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

