
Find the antilog of the number $\left( 3.9333 \right)$
Answer
581.7k+ views
Hint: To solve this question first of all we will be using the formula for logarithm. Secondly we will use value for log using the log table. Lastly after using the formulas and values, we can easily find the value which is asked in the given question.
Complete step-by-step solution -
In most of the exams, a log or antilog table is not provided to us. So in this solution we will understand how to find the value for log or antilog without using a log table or antilog table.
The mostly used log formulas are
(a)${{\log }_{e}}=2.303{{\log }_{10}}$
We mostly use ‘log’ as base 10 i.e. ${{\log }_{10}}$
(b) $\log \left( a\times b \right)=\log a+\log b$
(c) $\log \left( \dfrac{a}{b} \right)=\log a-\log b$
(d) $\log {{a}^{b}}=b\left( \log a \right)$
Let us write some values for ‘log’ using log table
$\begin{align}
& {{\log }_{10}}1=0 \\
& {{\log }_{10}}2=0.3 \\
& {{\log }_{10}}3=0.47 \\
& {{\log }_{10}}4=0.6 \\
& {{\log }_{10}}5=0.7 \\
& {{\log }_{0}}6=0.77 \\
& {{\log }_{10}}7=0.85 \\
& {{\log }_{10}}8=0.93 \\
& {{\log }_{10}}9=0.95 \\
& {{\log }_{10}}10=1 \\
\end{align}$
Now will be finding the value of antilog $\left( 3.9333 \right)$.
$\begin{align}
& =anti\log \left( 3.9333 \right) \\
& =anti\log \left( 3+0.9333 \right) \\
& =anti\log \left( \log {{10}^{3}}+\log 8 \right) \\
\end{align}$
For the first term we will use the formula $\log {{a}^{b}}=b\left( \log a \right)$ and for the second term we will substitute the value for ${{\log }_{10}}8=0.93$
\[\begin{align}
& =anti\log \left\{ \log \left( {{10}^{3}}\times 8 \right) \right\} \\
& =anti\log \times \log \left( {{10}^{3}}\times 8 \right) \\
& =\dfrac{1}{\log }\times \log \left( {{10}^{3}}\times 8 \right) \\
& =8\times {{10}^{3}} \\
\end{align}\]
Hence the value of $anti\log \left( 3.9333 \right)$ is $8\times {{10}^{3}}$.
Note: From the above solution we conclude that we can easily find the value for ‘log’ or ‘antilog’ without using the ‘log’ or ‘antilog’ table. We can also find the negative value of an antilog by using the same method. Always keep in mind a good command over the logarithm formula as well as the values for log from 1-10 must be required before solving this kind of question.
Example:
$\begin{align}
& =anti\log \left( -5.7 \right) \\
& =anti\log \left( -6+0.3 \right) \\
& =antiog\left( {{\log }_{10}}{{10}^{-6}}+\log 2 \right) \\
\end{align}$
In the above for the first term we have use the formula $\log {{a}^{b}}=b\left( \log a \right)$ and for the second term we have just use the value for ${{\log }_{10}}2=0.3$
\[\begin{align}
& =anti\log \left\{ \log \left( {{10}^{-6}}\times 2 \right) \right\} \\
& =anti\log \times \log \left( {{10}^{-6}}\times 2 \right) \\
& =\dfrac{1}{\log }\times \log \left( {{10}^{-6}}\times 2 \right) \\
& =2\times {{10}^{-6}} \\
\end{align}\]
Thus we can find the antilog of negative value too.
Complete step-by-step solution -
In most of the exams, a log or antilog table is not provided to us. So in this solution we will understand how to find the value for log or antilog without using a log table or antilog table.
The mostly used log formulas are
(a)${{\log }_{e}}=2.303{{\log }_{10}}$
We mostly use ‘log’ as base 10 i.e. ${{\log }_{10}}$
(b) $\log \left( a\times b \right)=\log a+\log b$
(c) $\log \left( \dfrac{a}{b} \right)=\log a-\log b$
(d) $\log {{a}^{b}}=b\left( \log a \right)$
Let us write some values for ‘log’ using log table
$\begin{align}
& {{\log }_{10}}1=0 \\
& {{\log }_{10}}2=0.3 \\
& {{\log }_{10}}3=0.47 \\
& {{\log }_{10}}4=0.6 \\
& {{\log }_{10}}5=0.7 \\
& {{\log }_{0}}6=0.77 \\
& {{\log }_{10}}7=0.85 \\
& {{\log }_{10}}8=0.93 \\
& {{\log }_{10}}9=0.95 \\
& {{\log }_{10}}10=1 \\
\end{align}$
Now will be finding the value of antilog $\left( 3.9333 \right)$.
$\begin{align}
& =anti\log \left( 3.9333 \right) \\
& =anti\log \left( 3+0.9333 \right) \\
& =anti\log \left( \log {{10}^{3}}+\log 8 \right) \\
\end{align}$
For the first term we will use the formula $\log {{a}^{b}}=b\left( \log a \right)$ and for the second term we will substitute the value for ${{\log }_{10}}8=0.93$
\[\begin{align}
& =anti\log \left\{ \log \left( {{10}^{3}}\times 8 \right) \right\} \\
& =anti\log \times \log \left( {{10}^{3}}\times 8 \right) \\
& =\dfrac{1}{\log }\times \log \left( {{10}^{3}}\times 8 \right) \\
& =8\times {{10}^{3}} \\
\end{align}\]
Hence the value of $anti\log \left( 3.9333 \right)$ is $8\times {{10}^{3}}$.
Note: From the above solution we conclude that we can easily find the value for ‘log’ or ‘antilog’ without using the ‘log’ or ‘antilog’ table. We can also find the negative value of an antilog by using the same method. Always keep in mind a good command over the logarithm formula as well as the values for log from 1-10 must be required before solving this kind of question.
Example:
$\begin{align}
& =anti\log \left( -5.7 \right) \\
& =anti\log \left( -6+0.3 \right) \\
& =antiog\left( {{\log }_{10}}{{10}^{-6}}+\log 2 \right) \\
\end{align}$
In the above for the first term we have use the formula $\log {{a}^{b}}=b\left( \log a \right)$ and for the second term we have just use the value for ${{\log }_{10}}2=0.3$
\[\begin{align}
& =anti\log \left\{ \log \left( {{10}^{-6}}\times 2 \right) \right\} \\
& =anti\log \times \log \left( {{10}^{-6}}\times 2 \right) \\
& =\dfrac{1}{\log }\times \log \left( {{10}^{-6}}\times 2 \right) \\
& =2\times {{10}^{-6}} \\
\end{align}\]
Thus we can find the antilog of negative value too.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

