
Find the angle between vector \[\hat{i}+\hat{j}\] and vector \[\hat{i}-\hat{j}\] .
Answer
589.8k+ views
Hint: Now we know that the dot product of two vectors $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ and $ \vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) $ is given by $ \vec{a}.\vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) $ . Also we know that $ \vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ and $ |\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} $ for any vector $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ . Hence with equation (1) and equation (2) we can find the value of $ \theta $ .
Complete step-by-step answer:
Now the given vectors are \[\hat{i}+\hat{j}\] and vectors \[\hat{i}-\hat{j}\] .
Now let \[\vec{a}=\hat{i}+\hat{j}\]
We know that for any vector $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ modulus of vector $ \vec{a} $ is $ |\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} $
Hence using this we get
$ |\vec{a}|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2}.........................(1) $
Now consider \[\hat{i}-\hat{j}\]
Let $ \vec{b}=\hat{i}-\hat{j} $
Now again we know for any vector $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ modulus of vector $ \vec{a} $ is $ |\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} $
Hence we get
$ |\vec{b}|=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}}=\sqrt{2}....................(2) $
Now we know that the dot product of two vectors $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ and $ \vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) $ is given by $ \vec{a}.\vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) $ .
Hence the dot product of \[\vec{a}=\hat{i}+\hat{j}\] and $ \vec{b}=\hat{i}-\hat{j} $ is given by
$ \vec{a}.\vec{b}=1(1)+1(-1)=0 $
Now for dot product we also have that $ \vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Hence for we get of \[\vec{a}=\hat{i}+\hat{j}\] and $ \vec{b}=\hat{i}-\hat{j} $
$ 0=|\vec{a}||\vec{b}|\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Now from equation (1) and equation (2) we substitute the value of $ |\vec{a}| $ and $ |\vec{b}| $ hence we get.
$ 0=\sqrt{2}\sqrt{2}\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Hence we get
$ 0=2\cos \theta $
Dividing the equation by 2 we get.
$ \cos \theta =0 $
We know that if $ \cos \theta =0 $ then the value of $ \theta $ is $ \dfrac{\pi }{2} $
Hence we get the angle between vector \[\hat{i}+\hat{j}\] and vector \[\hat{i}-\hat{j}\] is $ \dfrac{\pi }{2} $ .
Note: Note that we have if the vectors are perpendicular then their dot product is 0 and vice versa. Hence if we get a dot product as 0 we can directly say that the vectors are perpendicular.
Also we can find the angle between two vectors with the help of $ \vec{a}\times \vec{b}=|\vec{a}||\vec{b}|\sin \theta $ where $ \theta $ is angle between two vectors and for vectors $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ and $ \vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) $ cross product is given by \[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
Complete step-by-step answer:
Now the given vectors are \[\hat{i}+\hat{j}\] and vectors \[\hat{i}-\hat{j}\] .
Now let \[\vec{a}=\hat{i}+\hat{j}\]
We know that for any vector $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ modulus of vector $ \vec{a} $ is $ |\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} $
Hence using this we get
$ |\vec{a}|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2}.........................(1) $
Now consider \[\hat{i}-\hat{j}\]
Let $ \vec{b}=\hat{i}-\hat{j} $
Now again we know for any vector $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ modulus of vector $ \vec{a} $ is $ |\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} $
Hence we get
$ |\vec{b}|=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}}=\sqrt{2}....................(2) $
Now we know that the dot product of two vectors $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ and $ \vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) $ is given by $ \vec{a}.\vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) $ .
Hence the dot product of \[\vec{a}=\hat{i}+\hat{j}\] and $ \vec{b}=\hat{i}-\hat{j} $ is given by
$ \vec{a}.\vec{b}=1(1)+1(-1)=0 $
Now for dot product we also have that $ \vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Hence for we get of \[\vec{a}=\hat{i}+\hat{j}\] and $ \vec{b}=\hat{i}-\hat{j} $
$ 0=|\vec{a}||\vec{b}|\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Now from equation (1) and equation (2) we substitute the value of $ |\vec{a}| $ and $ |\vec{b}| $ hence we get.
$ 0=\sqrt{2}\sqrt{2}\cos \theta $ where $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $ .
Hence we get
$ 0=2\cos \theta $
Dividing the equation by 2 we get.
$ \cos \theta =0 $
We know that if $ \cos \theta =0 $ then the value of $ \theta $ is $ \dfrac{\pi }{2} $
Hence we get the angle between vector \[\hat{i}+\hat{j}\] and vector \[\hat{i}-\hat{j}\] is $ \dfrac{\pi }{2} $ .
Note: Note that we have if the vectors are perpendicular then their dot product is 0 and vice versa. Hence if we get a dot product as 0 we can directly say that the vectors are perpendicular.
Also we can find the angle between two vectors with the help of $ \vec{a}\times \vec{b}=|\vec{a}||\vec{b}|\sin \theta $ where $ \theta $ is angle between two vectors and for vectors $ \vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) $ and $ \vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) $ cross product is given by \[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

