
How do you find the angle between the vectors \[u = cos\left( {\dfrac{\pi }{3}} \right)i +
sin\left( {\dfrac{\pi }{3}} \right)j\;and\;v = cos\left( {\dfrac{{3\pi }}{4}} \right)i + sin\left(
{\dfrac{{3\pi }}{4}} \right)j\]?
Answer
541.5k+ views
Hint:First of all we need to understand what vectors are . Vectors can be said as physical quantities or objects which have both a magnitude and a direction . If the two vectors are supposed to be $\overrightarrow a $and $\overrightarrow b $. The ‘$\theta $’ is the angle by which the two vectors are separated . Now , to determine that what is the angle between the two vectors we are going to apply the dot product between those two vectors denoted as $\overrightarrow a
.\overrightarrow b $and the dot product is given as $\overrightarrow {a.} \overrightarrow b =
|a||b|\cos \theta $.
Step by step solution :
The angle $\theta $ between two vectors $\overrightarrow u $and $\overrightarrow v $as per the question given is related to the modulus ( or magnitude ) and scalar ( or dot ) product of
$\overrightarrow u $and $\overrightarrow u $by the relationship : $\overrightarrow {u.}
\overrightarrow v = |u||v|\cos \theta $
For the question above , The angle between the two vectors $\overrightarrow u $ and
$\overrightarrow v $ will be $\theta $ .
Calculating and simplifying the vectors ,
First , assigning the trigonometric values as the functions given of cosine and sine .
$\overrightarrow u = cos\left( {\dfrac{\pi }{3}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{\pi }{3}} \right)\mathop j\limits^ \wedge \; = \dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge $------- - 1
$\overrightarrow v = cos\left( {\dfrac{{3\pi }}{4}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{{3\pi }}{4}} \right)\mathop j\limits^ \wedge \; = - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^
\wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge $----- - 2
Now we will calculate the modulus of $|\overrightarrow u |$= $\left| {\dfrac{1}{2}\mathop
i\limits^ \wedge + \left. {\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right|} \right.$=
\[\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \]= $\sqrt
{\dfrac{1}{4} + \dfrac{3}{4}} $=$\sqrt 1 $=$1$
$|\overrightarrow v |$= $\left| { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \left.
{\dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right|} \right.$= \[\sqrt {{{\left( { - \dfrac{{\sqrt
2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} \]= $\sqrt {\dfrac{2}{4} +
\dfrac{2}{4}} $=$\sqrt 1 $=$1$
And now we perform the scalar product :
$\overrightarrow {u.} \overrightarrow v $ = $\left( {\dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right)$. $\left( { - \dfrac{{\sqrt 2 }}{2}\mathop
i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right)$
= $\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{{\sqrt 2 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}}
\right)\left( {\dfrac{{\sqrt 2 }}{2}} \right)$
= $
- \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 2 \sqrt 3 }}{4} \\
\\
$
=$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
Now applying the formula $\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta $ we get :
We will substitute the values after getting each values of L . H . S . and R . H . S . we calculated before in the above formula to get the angle .
$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$= $1.1.\cos \theta $
$\cos \theta $= $\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
$\theta = \dfrac{{7\pi }}{{12}}$
Therefore the angle between the two vectors $\overrightarrow u $ and $\overrightarrow v $ is
$\theta = \dfrac{{7\pi }}{{12}}$ .
Note : The vectors are the objects ( physical quantity ) in real life that are having magnitude and direction . For instance , Force and Velocity .
The modulus actually means $\left| {\overrightarrow r } \right|$= $\sqrt {{a^2} + {b^2}} $
Always remember by scalar product we refer to dot product .
For above question we calculated the L . H . S . and R . H . S . independently using the formula $\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta $. And then combined and substituted the calculated values .
.\overrightarrow b $and the dot product is given as $\overrightarrow {a.} \overrightarrow b =
|a||b|\cos \theta $.
Step by step solution :
The angle $\theta $ between two vectors $\overrightarrow u $and $\overrightarrow v $as per the question given is related to the modulus ( or magnitude ) and scalar ( or dot ) product of
$\overrightarrow u $and $\overrightarrow u $by the relationship : $\overrightarrow {u.}
\overrightarrow v = |u||v|\cos \theta $
For the question above , The angle between the two vectors $\overrightarrow u $ and
$\overrightarrow v $ will be $\theta $ .
Calculating and simplifying the vectors ,
First , assigning the trigonometric values as the functions given of cosine and sine .
$\overrightarrow u = cos\left( {\dfrac{\pi }{3}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{\pi }{3}} \right)\mathop j\limits^ \wedge \; = \dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge $------- - 1
$\overrightarrow v = cos\left( {\dfrac{{3\pi }}{4}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{{3\pi }}{4}} \right)\mathop j\limits^ \wedge \; = - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^
\wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge $----- - 2
Now we will calculate the modulus of $|\overrightarrow u |$= $\left| {\dfrac{1}{2}\mathop
i\limits^ \wedge + \left. {\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right|} \right.$=
\[\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \]= $\sqrt
{\dfrac{1}{4} + \dfrac{3}{4}} $=$\sqrt 1 $=$1$
$|\overrightarrow v |$= $\left| { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \left.
{\dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right|} \right.$= \[\sqrt {{{\left( { - \dfrac{{\sqrt
2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} \]= $\sqrt {\dfrac{2}{4} +
\dfrac{2}{4}} $=$\sqrt 1 $=$1$
And now we perform the scalar product :
$\overrightarrow {u.} \overrightarrow v $ = $\left( {\dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right)$. $\left( { - \dfrac{{\sqrt 2 }}{2}\mathop
i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right)$
= $\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{{\sqrt 2 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}}
\right)\left( {\dfrac{{\sqrt 2 }}{2}} \right)$
= $
- \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 2 \sqrt 3 }}{4} \\
\\
$
=$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
Now applying the formula $\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta $ we get :
We will substitute the values after getting each values of L . H . S . and R . H . S . we calculated before in the above formula to get the angle .
$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$= $1.1.\cos \theta $
$\cos \theta $= $\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
$\theta = \dfrac{{7\pi }}{{12}}$
Therefore the angle between the two vectors $\overrightarrow u $ and $\overrightarrow v $ is
$\theta = \dfrac{{7\pi }}{{12}}$ .
Note : The vectors are the objects ( physical quantity ) in real life that are having magnitude and direction . For instance , Force and Velocity .
The modulus actually means $\left| {\overrightarrow r } \right|$= $\sqrt {{a^2} + {b^2}} $
Always remember by scalar product we refer to dot product .
For above question we calculated the L . H . S . and R . H . S . independently using the formula $\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta $. And then combined and substituted the calculated values .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

