
Find the angle between the vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$.
Answer
592.5k+ views
Hint: The angle between two vectors can be obtained by the dot product of the two vectors. The dot product is defined as the magnitude of the component of one of the vectors with respect to the second vector. Mathematically, it can be written as-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta ,\text{where } {\theta } \text{ is the angle between the vectors}$...(1)
Complete step-by-step answer:
We have been given two vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$. First we will find the magnitudes of vectors A and B using the formula-
$\left| {{{x\hat i}} + {{y\hat j}} + {{z\hat k}}} \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} $
$\begin{align}
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right| = \sqrt {{2^2} + {3^2} + {(-4)^2}} = \sqrt {4 + 9 + 16} = \sqrt {29} \\
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right| = \sqrt {{5^2} + {2^2} + {4^2}} = \sqrt {25 + 4 + 16} = \sqrt {45} \\
\end{align} $
Also, using the dot product formula-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y} }} = \left( {{{\text{a}}_1}{{\hat i}} + {{\text{b}}_1}{{\hat j}} + {{\text{c}}_1}{{\hat k}}} \right).\left( {{{\text{a}}_2}{{\hat i}} + {{\text{b}}_2}{{\hat j}} + {{\text{c}}_2}{{\hat k}}} \right) = {{\text{a}}_1}{{\text{a}}_2} + {{\text{b}}_1}{{\text{b}}_2} + {{\text{c}}_1}{{\text{c}}_2}$
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left( {2{{\hat i}} + 3{{\hat j}} - 4{{\hat k}}} \right).\left( {5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}} \right) = 10 + 6 - 16 = 0$
Substituting these values in equation (1) we get-
$\begin{align}
&{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta \\
&0 = \sqrt {29} \times \sqrt {45} \times cos\theta \\
&cos\theta = 0 \\
{{\theta }} = {90^{\text{o}}} \\
\end{align}$
This is the angle between the two vectors.
Note: The result obtained in this question can be used as a general property, that is, if the dot product of any two vectors is zero, then they are perpendicular to each other. Also, in such types of questions, we can also use the formula for cross product, but it is not advisable because it is a lengthy method.
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta ,\text{where } {\theta } \text{ is the angle between the vectors}$...(1)
Complete step-by-step answer:
We have been given two vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$. First we will find the magnitudes of vectors A and B using the formula-
$\left| {{{x\hat i}} + {{y\hat j}} + {{z\hat k}}} \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} $
$\begin{align}
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right| = \sqrt {{2^2} + {3^2} + {(-4)^2}} = \sqrt {4 + 9 + 16} = \sqrt {29} \\
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right| = \sqrt {{5^2} + {2^2} + {4^2}} = \sqrt {25 + 4 + 16} = \sqrt {45} \\
\end{align} $
Also, using the dot product formula-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y} }} = \left( {{{\text{a}}_1}{{\hat i}} + {{\text{b}}_1}{{\hat j}} + {{\text{c}}_1}{{\hat k}}} \right).\left( {{{\text{a}}_2}{{\hat i}} + {{\text{b}}_2}{{\hat j}} + {{\text{c}}_2}{{\hat k}}} \right) = {{\text{a}}_1}{{\text{a}}_2} + {{\text{b}}_1}{{\text{b}}_2} + {{\text{c}}_1}{{\text{c}}_2}$
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left( {2{{\hat i}} + 3{{\hat j}} - 4{{\hat k}}} \right).\left( {5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}} \right) = 10 + 6 - 16 = 0$
Substituting these values in equation (1) we get-
$\begin{align}
&{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta \\
&0 = \sqrt {29} \times \sqrt {45} \times cos\theta \\
&cos\theta = 0 \\
{{\theta }} = {90^{\text{o}}} \\
\end{align}$
This is the angle between the two vectors.
Note: The result obtained in this question can be used as a general property, that is, if the dot product of any two vectors is zero, then they are perpendicular to each other. Also, in such types of questions, we can also use the formula for cross product, but it is not advisable because it is a lengthy method.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

