
Find the angle between the vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$.
Answer
606.6k+ views
Hint: The angle between two vectors can be obtained by the dot product of the two vectors. The dot product is defined as the magnitude of the component of one of the vectors with respect to the second vector. Mathematically, it can be written as-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta ,\text{where } {\theta } \text{ is the angle between the vectors}$...(1)
Complete step-by-step answer:
We have been given two vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$. First we will find the magnitudes of vectors A and B using the formula-
$\left| {{{x\hat i}} + {{y\hat j}} + {{z\hat k}}} \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} $
$\begin{align}
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right| = \sqrt {{2^2} + {3^2} + {(-4)^2}} = \sqrt {4 + 9 + 16} = \sqrt {29} \\
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right| = \sqrt {{5^2} + {2^2} + {4^2}} = \sqrt {25 + 4 + 16} = \sqrt {45} \\
\end{align} $
Also, using the dot product formula-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y} }} = \left( {{{\text{a}}_1}{{\hat i}} + {{\text{b}}_1}{{\hat j}} + {{\text{c}}_1}{{\hat k}}} \right).\left( {{{\text{a}}_2}{{\hat i}} + {{\text{b}}_2}{{\hat j}} + {{\text{c}}_2}{{\hat k}}} \right) = {{\text{a}}_1}{{\text{a}}_2} + {{\text{b}}_1}{{\text{b}}_2} + {{\text{c}}_1}{{\text{c}}_2}$
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left( {2{{\hat i}} + 3{{\hat j}} - 4{{\hat k}}} \right).\left( {5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}} \right) = 10 + 6 - 16 = 0$
Substituting these values in equation (1) we get-
$\begin{align}
&{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta \\
&0 = \sqrt {29} \times \sqrt {45} \times cos\theta \\
&cos\theta = 0 \\
{{\theta }} = {90^{\text{o}}} \\
\end{align}$
This is the angle between the two vectors.
Note: The result obtained in this question can be used as a general property, that is, if the dot product of any two vectors is zero, then they are perpendicular to each other. Also, in such types of questions, we can also use the formula for cross product, but it is not advisable because it is a lengthy method.
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta ,\text{where } {\theta } \text{ is the angle between the vectors}$...(1)
Complete step-by-step answer:
We have been given two vectors ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }} = 2\widehat {\text{i}} + 3\widehat {\text{j}} - 4\widehat {\text{k}}$ and ${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = 5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}$. First we will find the magnitudes of vectors A and B using the formula-
$\left| {{{x\hat i}} + {{y\hat j}} + {{z\hat k}}} \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} $
$\begin{align}
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right| = \sqrt {{2^2} + {3^2} + {(-4)^2}} = \sqrt {4 + 9 + 16} = \sqrt {29} \\
&\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right| = \sqrt {{5^2} + {2^2} + {4^2}} = \sqrt {25 + 4 + 16} = \sqrt {45} \\
\end{align} $
Also, using the dot product formula-
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y} }} = \left( {{{\text{a}}_1}{{\hat i}} + {{\text{b}}_1}{{\hat j}} + {{\text{c}}_1}{{\hat k}}} \right).\left( {{{\text{a}}_2}{{\hat i}} + {{\text{b}}_2}{{\hat j}} + {{\text{c}}_2}{{\hat k}}} \right) = {{\text{a}}_1}{{\text{a}}_2} + {{\text{b}}_1}{{\text{b}}_2} + {{\text{c}}_1}{{\text{c}}_2}$
${{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left( {2{{\hat i}} + 3{{\hat j}} - 4{{\hat k}}} \right).\left( {5{{\hat i}} + 2{{\hat j}} + 4{{\hat k}}} \right) = 10 + 6 - 16 = 0$
Substituting these values in equation (1) we get-
$\begin{align}
&{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}.{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }} = \left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} }}} \right|\left| {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} }}} \right|cos\theta \\
&0 = \sqrt {29} \times \sqrt {45} \times cos\theta \\
&cos\theta = 0 \\
{{\theta }} = {90^{\text{o}}} \\
\end{align}$
This is the angle between the two vectors.
Note: The result obtained in this question can be used as a general property, that is, if the dot product of any two vectors is zero, then they are perpendicular to each other. Also, in such types of questions, we can also use the formula for cross product, but it is not advisable because it is a lengthy method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

