
Find the angle between the $ \vec F = (4\hat i + 3\hat j) $ units, and displacement $ \vec d = (4\hat j - 3\hat k) $ unit. Find the projection of $ \vec F $ on $ \vec d $ .
Answer
568.2k+ views
Hint : The rule of the dot product can be used to find the angle between two vectors. To find the dot product, we need to multiply only the components that are the same, and add all components together.
Formula used: In this solution we will be using the following formula;
$ \vec A \cdot \vec B = \left| {\vec A} \right|\left| {\vec B} \right|\cos \theta $ where $ \vec A \cdot \vec B $ is the dot product of vector $ \vec A $ and $ \vec B $ , $ \left| {\vec A} \right| $ is the magnitude of $ \vec A $ and $ \left| {\vec B} \right| $ is the magnitude of $ \vec B $ , and $ \theta $ is the angle between them.
$ \vec A \cdot \vec B = {A_x}{B_x} + {A_y}{B_y} + {A_z}{B_z} $ where the subscript x, y, z signifies the component of the vector. $ a = \vec A \cdot \dfrac{{\vec B}}{{\left| {\vec B} \right|}} $ where $ a $ is the projection of vectors $ \vec A $ on $ \vec B $ .
Complete step by step answer:
The angle between two vectors $ \vec F = (4\hat i + 3\hat j) $ units and $ \vec d = (4\hat j - 3\hat k) $ units are to be found.
The formula for dot product can be given as
$ \vec A \cdot \vec B = \left| {\vec A} \right|\left| {\vec B} \right|\cos \theta $ where $ \vec A \cdot \vec B $ is the dot product of vector $ \vec A $ and $ \vec B $ , $ \left| {\vec A} \right| $ is the magnitude of $ \vec A $ and $ \left| {\vec B} \right| $ is the magnitude of $ \vec B $ , and $ \theta $ is the angle between them.
Hence, $ \cos \theta = \dfrac{{\vec A \cdot \vec B}}{{\left| {\vec A} \right|\left| {\vec B} \right|}} $
Now to find dot product, we have
$ \vec A \cdot \vec B = {A_x}{B_x} + {A_y}{B_y} + {A_z}{B_z} $ where the subscript x, y, z signifies the component of the vector.
Then $ \vec F \cdot \vec d = (4\hat i + 3\hat j) \cdot (4\hat j - 3\hat k) = \left( {4 \times 4 + 3 \times - 3} \right) $
$ \Rightarrow \vec F \cdot \vec d = 16 - 9 = 7{\text{square units}} $
Now the magnitude of a vector $ \vec A $ is $ \left| {\vec A} \right| = \sqrt {{A_x}^2 + {A_y}^2 + {A_z}^2} $
Then $ \left| {\vec F} \right| = \sqrt {{4^2} + {3^2} + {0^2}} = 5 $ and
$ \left| {\vec d} \right| = \sqrt {{0^2} + {4^2} + {{\left( { - 3} \right)}^2}} = 5 $
Hence, $ \cos \theta = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} = \dfrac{7}{{5 \times 5}} = \dfrac{7}{{25}} $
$ \Rightarrow \theta = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right) = 1.29rad $ or about $ 74^\circ $ (74 degrees)
The projection of the vector $ \vec F $ on the vector $ \vec d $ can be given as
$ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} $
This can be proven to be
$ f = \left| {\vec F} \right|\cos \theta $
Hence, by substitution of the know values
$ f = 5 \times \dfrac{7}{{25}} $
$ \Rightarrow f = \dfrac{7}{5} $ .
Note:
For clarity, $ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} $ can be proven as follows.
$ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec d} \right|}} $
If we multiply both sides by the magnitude of the vector $ \vec F $ , we have
$ f = \dfrac{{\left| {\vec F} \right|}}{{\left| {\vec F} \right|}}\dfrac{{\vec F \cdot \vec d}}{{\left| {\vec d} \right|}} $
This can be written as
$ f = \left| {\vec F} \right|\dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $
From, the formula of product rule
$ \cos \theta = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $
Hence, by replacing $ \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $ with $ \cos \theta $
$ f = \left| {\vec F} \right|\cos \theta $ .
Formula used: In this solution we will be using the following formula;
$ \vec A \cdot \vec B = \left| {\vec A} \right|\left| {\vec B} \right|\cos \theta $ where $ \vec A \cdot \vec B $ is the dot product of vector $ \vec A $ and $ \vec B $ , $ \left| {\vec A} \right| $ is the magnitude of $ \vec A $ and $ \left| {\vec B} \right| $ is the magnitude of $ \vec B $ , and $ \theta $ is the angle between them.
$ \vec A \cdot \vec B = {A_x}{B_x} + {A_y}{B_y} + {A_z}{B_z} $ where the subscript x, y, z signifies the component of the vector. $ a = \vec A \cdot \dfrac{{\vec B}}{{\left| {\vec B} \right|}} $ where $ a $ is the projection of vectors $ \vec A $ on $ \vec B $ .
Complete step by step answer:
The angle between two vectors $ \vec F = (4\hat i + 3\hat j) $ units and $ \vec d = (4\hat j - 3\hat k) $ units are to be found.
The formula for dot product can be given as
$ \vec A \cdot \vec B = \left| {\vec A} \right|\left| {\vec B} \right|\cos \theta $ where $ \vec A \cdot \vec B $ is the dot product of vector $ \vec A $ and $ \vec B $ , $ \left| {\vec A} \right| $ is the magnitude of $ \vec A $ and $ \left| {\vec B} \right| $ is the magnitude of $ \vec B $ , and $ \theta $ is the angle between them.
Hence, $ \cos \theta = \dfrac{{\vec A \cdot \vec B}}{{\left| {\vec A} \right|\left| {\vec B} \right|}} $
Now to find dot product, we have
$ \vec A \cdot \vec B = {A_x}{B_x} + {A_y}{B_y} + {A_z}{B_z} $ where the subscript x, y, z signifies the component of the vector.
Then $ \vec F \cdot \vec d = (4\hat i + 3\hat j) \cdot (4\hat j - 3\hat k) = \left( {4 \times 4 + 3 \times - 3} \right) $
$ \Rightarrow \vec F \cdot \vec d = 16 - 9 = 7{\text{square units}} $
Now the magnitude of a vector $ \vec A $ is $ \left| {\vec A} \right| = \sqrt {{A_x}^2 + {A_y}^2 + {A_z}^2} $
Then $ \left| {\vec F} \right| = \sqrt {{4^2} + {3^2} + {0^2}} = 5 $ and
$ \left| {\vec d} \right| = \sqrt {{0^2} + {4^2} + {{\left( { - 3} \right)}^2}} = 5 $
Hence, $ \cos \theta = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} = \dfrac{7}{{5 \times 5}} = \dfrac{7}{{25}} $
$ \Rightarrow \theta = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right) = 1.29rad $ or about $ 74^\circ $ (74 degrees)
The projection of the vector $ \vec F $ on the vector $ \vec d $ can be given as
$ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} $
This can be proven to be
$ f = \left| {\vec F} \right|\cos \theta $
Hence, by substitution of the know values
$ f = 5 \times \dfrac{7}{{25}} $
$ \Rightarrow f = \dfrac{7}{5} $ .
Note:
For clarity, $ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} $ can be proven as follows.
$ f = \vec F \cdot \dfrac{{\vec d}}{{\left| {\vec d} \right|}} = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec d} \right|}} $
If we multiply both sides by the magnitude of the vector $ \vec F $ , we have
$ f = \dfrac{{\left| {\vec F} \right|}}{{\left| {\vec F} \right|}}\dfrac{{\vec F \cdot \vec d}}{{\left| {\vec d} \right|}} $
This can be written as
$ f = \left| {\vec F} \right|\dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $
From, the formula of product rule
$ \cos \theta = \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $
Hence, by replacing $ \dfrac{{\vec F \cdot \vec d}}{{\left| {\vec F} \right|\left| {\vec d} \right|}} $ with $ \cos \theta $
$ f = \left| {\vec F} \right|\cos \theta $ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

