
Find the angle between the lines whose direction ratios are proportional to 4, -3, 5 and 3, 4, 5.
Answer
595.5k+ views
Hint: Determine the line vectors using the direction ratios, we know for the vector $\overrightarrow{r}=a\overset{\hat{\ }}{\mathop{i}}\,+b\overset{\wedge }{\mathop{j}}\,+c\overset{\wedge }{\mathop{k}}\,$, the direction ratios are (a, b, c) and the proportionality given in the question, then find their scalar product.
Complete step-by-step answer:
Let us assume the line vector with direction ratios 4, -3, 5 to be $\overrightarrow{a}$.
Then, $\overrightarrow{a}=4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.
Let us assume the line vector with direction ratios 3, 4, 5 to be $\overrightarrow{b}$.
Therefore, the x component is 3.
Therefore, the y component is 4.
Therefore, the z component is 5.
Then, $\overrightarrow{b}=3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.
We know that the scalar product of $\overrightarrow{x}\ and\ \overrightarrow{y}$is
$\overrightarrow{x}.\overrightarrow{y}=\left| \overrightarrow{x} \right|\left| \overrightarrow{y} \right|\cos \theta $,
Where $\overrightarrow{x}\ and\ \overrightarrow{y}$ are the magnitudes of $\overrightarrow{x}\ and\ \overrightarrow{y}$ respectively and $\theta $ is the angle between $\overrightarrow{x}\ and\ \overrightarrow{y}$.
Let us assume the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ i.e. the two given line to be $\phi $, then
$\left( \overrightarrow{a}.\overrightarrow{b} \right)=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \phi $
This can also be written as,
$\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}..........(i)$
Now we will find the values separately,
$\begin{align}
& \left| \overrightarrow{a} \right|=\sqrt{{{4}^{2}}+{{\left( -3 \right)}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\
& \left| \overrightarrow{b} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\
\end{align}$
Substituting these values in equation (i), we get
$\begin{align}
& \cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|} \\
& \Rightarrow \cos \phi =\dfrac{\left( 4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)\left( 3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)}{5\sqrt{2}\times 5\sqrt{2}} \\
& \Rightarrow \cos \phi =\dfrac{4\times 3-3\times 4+5\times 5}{50} \\
& \Rightarrow \cos \phi =\dfrac{25}{50} \\
& \Rightarrow \cos \phi =\dfrac{1}{2} \\
\end{align}$
Therefore,
$\phi ={{\cos }^{-1}}\dfrac{1}{2}$
$\phi =\dfrac{\pi }{3}$
Therefore, the angle between the two lines is $\dfrac{\pi }{3}$.
Note:Another approach to find the angle between two lines is by first finding the unit vectors of the given lines by using the formula $\overset{\wedge }{\mathop{a}}\,=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$. And the angle between two unit vector is given by $\cos \phi =\overset{\wedge }{\mathop{a}}\,.\overset{\wedge }{\mathop{b}}\,$
Complete step-by-step answer:
Let us assume the line vector with direction ratios 4, -3, 5 to be $\overrightarrow{a}$.
Then, $\overrightarrow{a}=4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.
Let us assume the line vector with direction ratios 3, 4, 5 to be $\overrightarrow{b}$.
Therefore, the x component is 3.
Therefore, the y component is 4.
Therefore, the z component is 5.
Then, $\overrightarrow{b}=3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.
We know that the scalar product of $\overrightarrow{x}\ and\ \overrightarrow{y}$is
$\overrightarrow{x}.\overrightarrow{y}=\left| \overrightarrow{x} \right|\left| \overrightarrow{y} \right|\cos \theta $,
Where $\overrightarrow{x}\ and\ \overrightarrow{y}$ are the magnitudes of $\overrightarrow{x}\ and\ \overrightarrow{y}$ respectively and $\theta $ is the angle between $\overrightarrow{x}\ and\ \overrightarrow{y}$.
Let us assume the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ i.e. the two given line to be $\phi $, then
$\left( \overrightarrow{a}.\overrightarrow{b} \right)=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \phi $
This can also be written as,
$\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}..........(i)$
Now we will find the values separately,
$\begin{align}
& \left| \overrightarrow{a} \right|=\sqrt{{{4}^{2}}+{{\left( -3 \right)}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\
& \left| \overrightarrow{b} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\
\end{align}$
Substituting these values in equation (i), we get
$\begin{align}
& \cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|} \\
& \Rightarrow \cos \phi =\dfrac{\left( 4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)\left( 3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)}{5\sqrt{2}\times 5\sqrt{2}} \\
& \Rightarrow \cos \phi =\dfrac{4\times 3-3\times 4+5\times 5}{50} \\
& \Rightarrow \cos \phi =\dfrac{25}{50} \\
& \Rightarrow \cos \phi =\dfrac{1}{2} \\
\end{align}$
Therefore,
$\phi ={{\cos }^{-1}}\dfrac{1}{2}$
$\phi =\dfrac{\pi }{3}$
Therefore, the angle between the two lines is $\dfrac{\pi }{3}$.
Note:Another approach to find the angle between two lines is by first finding the unit vectors of the given lines by using the formula $\overset{\wedge }{\mathop{a}}\,=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$. And the angle between two unit vector is given by $\cos \phi =\overset{\wedge }{\mathop{a}}\,.\overset{\wedge }{\mathop{b}}\,$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

