Find the amount of Rs. 36000 after 2 years, compounded annually. The rate of interest being 10% for the first year and 12% for the second year.
Answer
Verified
438.3k+ views
Hint: Here the principal amount is Rs.36000 and we are given that it is compounded annually with a rate of interest of 10% for first year and 12% for second year and using this the amount at the end of two years is given by the formula $A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$.
Complete step by step solution:
We are given a principle amount
$ \Rightarrow P = 36000$
And we are given that it was compounded annually
And we are given two different rate of interests for each year
So now let the rate of interest for first year be ${R_1}$
$ \Rightarrow {R_1} = 10\% $
And the rate of interest for second year be ${R_2}$
$ \Rightarrow {R_2} = 12\% $
Therefore the amount at the end of 2 years will be
$ \Rightarrow A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$
Now let's use the known values in this formula
\[
\Rightarrow A = 36000\left( {1 + \dfrac{{10}}{{100}}} \right)\left( {1 + \dfrac{{12}}{{100}}} \right) \\
\Rightarrow A = 36000\left( {1 + \dfrac{1}{{10}}} \right)\left( {1 + \dfrac{3}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{10 + 1}}{{10}}} \right)\left( {\dfrac{{25 + 3}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{11}}{{10}}} \right)\left( {\dfrac{{28}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{308}}{{250}}} \right) = 3600\left( {\dfrac{{308}}{{25}}} \right) \\
\Rightarrow A = 144\times 308 = 44352 \\
\]
Therefore the amount at the end of two years is Rs.44352.
Note :
Students may tend to use the formula of compound interest
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^t}$
But we don’t use this here because we are given different rates of interest for each year.
Compound interest makes your money grow faster because interest is calculated on the accumulated interest over time as well as on your original principal.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period. Compound interest finds its usage in most of the transactions in the banking and finance sectors and also in other areas as well.
Complete step by step solution:
We are given a principle amount
$ \Rightarrow P = 36000$
And we are given that it was compounded annually
And we are given two different rate of interests for each year
So now let the rate of interest for first year be ${R_1}$
$ \Rightarrow {R_1} = 10\% $
And the rate of interest for second year be ${R_2}$
$ \Rightarrow {R_2} = 12\% $
Therefore the amount at the end of 2 years will be
$ \Rightarrow A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$
Now let's use the known values in this formula
\[
\Rightarrow A = 36000\left( {1 + \dfrac{{10}}{{100}}} \right)\left( {1 + \dfrac{{12}}{{100}}} \right) \\
\Rightarrow A = 36000\left( {1 + \dfrac{1}{{10}}} \right)\left( {1 + \dfrac{3}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{10 + 1}}{{10}}} \right)\left( {\dfrac{{25 + 3}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{11}}{{10}}} \right)\left( {\dfrac{{28}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{308}}{{250}}} \right) = 3600\left( {\dfrac{{308}}{{25}}} \right) \\
\Rightarrow A = 144\times 308 = 44352 \\
\]
Therefore the amount at the end of two years is Rs.44352.
Note :
Students may tend to use the formula of compound interest
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^t}$
But we don’t use this here because we are given different rates of interest for each year.
Compound interest makes your money grow faster because interest is calculated on the accumulated interest over time as well as on your original principal.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period. Compound interest finds its usage in most of the transactions in the banking and finance sectors and also in other areas as well.
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science
What are the 12 elements of nature class 8 chemistry CBSE
Write a letter to the Municipal Commissioner to inform class 8 english CBSE