
How do you find the 6 trigonometric functions for $-\dfrac{\pi }{2}$?
Answer
539.7k+ views
Hint: In trigonometry, the six basic trigonometric functions that are widely used are $\sin \theta ,\cos \theta ,\tan \theta ,\cot \theta ,\sec \theta ,\cos ec\theta $. We need to substitute the value of $-\dfrac{\pi }{2}$ in place in $\theta $ to get the required result.
Complete step by step answer:
The six trigonometric functions are $\sin \theta ,\cos \theta ,\tan \theta ,\cot \theta ,\sec \theta ,\cos ec\theta $.
For the $\sin \theta $function,
sine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle $\theta $ to the length of the hypotenuse of the right-angle triangle denoted by$\sin \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\sin \left( -\dfrac{\pi }{2} \right)$
We know that $\sin \left( -\theta \right)=-\sin \theta $
Substituting the same,
We get,
$\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-\sin \left( \dfrac{\pi }{2} \right)$
$\Rightarrow -\sin \left( \dfrac{\pi }{2} \right)=-1$
For the $\cos \theta $ function,
cosine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side adjacent to an angle $\theta $ to the length of the hypotenuse of the right-angle triangle denoted by $\cos \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\cos \left( -\dfrac{\pi }{2} \right)$
We know that $\cos \left( -\theta \right)=\cos \theta $
Substituting the same,
We get,
$\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \cos \left( \dfrac{\pi }{2} \right)=0$
For the $\tan \theta $ function,
Tangent is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle $\theta $ to the length of the side adjacent to an angle $\theta $of the right-angle triangle denoted by$\tan \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\tan \left( -\dfrac{\pi }{2} \right)$
We know that $\tan \left( -\theta \right)=-\tan \theta $
Substituting the same,
We get,
$\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\tan \left( \dfrac{\pi }{2} \right)$
$\Rightarrow -\tan \left( \dfrac{\pi }{2} \right)=-\infty $
For the $\cot \theta $function,
The reciprocal of tangent function is cotangent function.
$\Rightarrow \cot \theta =\dfrac{1}{\tan \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\tan \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\infty $
Substituting the same,
We get,
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-\infty }$
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=0$
For the $\cos ec\theta $ function,
The reciprocal of sine function is the cosecant function.
$\Rightarrow \cos ec\theta =\dfrac{1}{\sin \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\sin \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-1$
Substituting the same,
We get,
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-1}$
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=-1$
For the $\sec \theta $ function,
The reciprocal of cosine function is the secant function.
$\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\cos \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=0$
Substituting the same,
We get,
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{0}$
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\infty $
Note: We need to know the trigonometric ratios of $\left( -\theta \right)$to solve the question easily. The relation between the trigonometric functions such as cotangent, tangent and sine, cosecant helps us to solve the problem in less time.
Complete step by step answer:
The six trigonometric functions are $\sin \theta ,\cos \theta ,\tan \theta ,\cot \theta ,\sec \theta ,\cos ec\theta $.
For the $\sin \theta $function,
sine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle $\theta $ to the length of the hypotenuse of the right-angle triangle denoted by$\sin \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\sin \left( -\dfrac{\pi }{2} \right)$
We know that $\sin \left( -\theta \right)=-\sin \theta $
Substituting the same,
We get,
$\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-\sin \left( \dfrac{\pi }{2} \right)$
$\Rightarrow -\sin \left( \dfrac{\pi }{2} \right)=-1$
For the $\cos \theta $ function,
cosine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side adjacent to an angle $\theta $ to the length of the hypotenuse of the right-angle triangle denoted by $\cos \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\cos \left( -\dfrac{\pi }{2} \right)$
We know that $\cos \left( -\theta \right)=\cos \theta $
Substituting the same,
We get,
$\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \cos \left( \dfrac{\pi }{2} \right)=0$
For the $\tan \theta $ function,
Tangent is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle $\theta $ to the length of the side adjacent to an angle $\theta $of the right-angle triangle denoted by$\tan \theta $.
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
So, we need to find the value of $\tan \left( -\dfrac{\pi }{2} \right)$
We know that $\tan \left( -\theta \right)=-\tan \theta $
Substituting the same,
We get,
$\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\tan \left( \dfrac{\pi }{2} \right)$
$\Rightarrow -\tan \left( \dfrac{\pi }{2} \right)=-\infty $
For the $\cot \theta $function,
The reciprocal of tangent function is cotangent function.
$\Rightarrow \cot \theta =\dfrac{1}{\tan \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\tan \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\infty $
Substituting the same,
We get,
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-\infty }$
$\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=0$
For the $\cos ec\theta $ function,
The reciprocal of sine function is the cosecant function.
$\Rightarrow \cos ec\theta =\dfrac{1}{\sin \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\sin \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-1$
Substituting the same,
We get,
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-1}$
$\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=-1$
For the $\sec \theta $ function,
The reciprocal of cosine function is the secant function.
$\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }$
According to the question,
$\Rightarrow \theta =-\dfrac{\pi }{2}$
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\cos \left( -\dfrac{\pi }{2} \right)}$
From the above,
$\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=0$
Substituting the same,
We get,
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{0}$
$\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\infty $
Note: We need to know the trigonometric ratios of $\left( -\theta \right)$to solve the question easily. The relation between the trigonometric functions such as cotangent, tangent and sine, cosecant helps us to solve the problem in less time.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

