
How do you find the $6$ trigonometric functions for $600$degrees?
Answer
556.5k+ views
Hint: In this question we have to find the $6$ trigonometric ratios at ${{600}^{\circ }}$ which implies we have to find $\sin \left( {{600}^{\circ }} \right),\cos \left( {{600}^{\circ }} \right),\tan \left( {{600}^{\circ }} \right),\cot \left( {{600}^{\circ }} \right),\sec \left( {{600}^{\circ }} \right)$ and $\csc \left( {{600}^{\circ }} \right)$. We will first find out what is the coterminal angle to ${{600}^{\circ }}$and then find the value of $\sin \left( {{600}^{\circ }} \right)$ and $\cos \left( {{600}^{\circ }} \right)$ , and then use these two functions to find the remaining functions.
Complete step-by-step solution:
We will first see how many loops we can get from the angle ${{600}^{\circ }}$.
Each loop is completed after ${{360}^{\circ }}$ therefore, angle can be divided and written as:
$\Rightarrow {{360}^{\circ }}+{{240}^{\circ }}$
Now the angle ${{240}^{\circ }}$can be written as a difference of ${{360}^{\circ }}$ as:
\[\Rightarrow {{360}^{\circ }}+\left( {{360}^{\circ }}-{{120}^{\circ }} \right)\]
On taking the term out as common and simplifying, we get:
\[\Rightarrow 2\times {{360}^{\circ }}-{{120}^{\circ }}\]
Now since two loops are completed fully, the coterminal angle is:
\[\Rightarrow -{{120}^{\circ }}\]
Now we will find the value of $\sin \left( -{{120}^{\circ }} \right)$ and $\cos \left( -{{120}^{\circ }} \right)$.
We know that $\sin \left( \theta \right)=-\sin \theta $ and $\cos \left( -\theta \right)=\cos \theta $ therefore, we can say that:
$\Rightarrow \sin \left( {{600}^{\circ }} \right)=-\sin \left( {{120}^{\circ }} \right)$
$\Rightarrow \cos \left( {{600}^{\circ }} \right)=\cos \left( {{120}^{\circ }} \right)$
Now we the angle in both the functions can be written as:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\sin ({{60}^{\circ }}+{{60}^{\circ }})$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=\cos ({{60}^{\circ }}+{{60}^{\circ }})$
Now we know the double angle formula which is $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\cos (a+b)=\cos a\cos b-\sin a\sin b$ therefore, on using the formula, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\left( \sin \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right)+\sin \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right) \right)$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=\cos \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)\sin \left( {{60}^{\circ }} \right)$
Now, we know that $\sin \left( {{60}^{\circ }} \right)=\dfrac{\sqrt{3}}{2}$ and $\cos \left( {{60}^{\circ }} \right)=\dfrac{1}{2}$, on substituting the values, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2} \right)$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)= \left( \dfrac{1}{2}\times \dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)$
On simplifying, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\dfrac{\sqrt{3}}{2}$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}$
Now from these two functions, we can evaluate the rest of the functions.
We know $\sec \theta =\dfrac{1}{\cos \theta }$ therefore, $\sec \left( {{600}^{\circ }} \right)=\dfrac{1}{\cos \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \sec \left( {{600}^{\circ }} \right)=\dfrac{1}{\left( -1/2 \right)}=-2$
We know $\csc \theta =\dfrac{1}{\sin \theta }$ therefore, $\csc \left( {{600}^{\circ }} \right)=\dfrac{1}{\sin \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \csc \left( {{600}^{\circ }} \right)=\dfrac{1}{\left( -\sqrt{3}/2 \right)}=-\dfrac{2\sqrt{3}}{3}$
We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ therefore, $\tan \left( {{600}^{\circ }} \right)=\dfrac{\sin \left( {{600}^{\circ }} \right)}{\cos \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \tan \left( {{600}^{\circ }} \right)=\dfrac{\left( -\sqrt{3}/2 \right)}{\left( 1/2 \right)}=-\sqrt{3}$
And we know $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ therefore, $\cot \left( {{600}^{\circ }} \right)=\dfrac{\cos \left( {{600}^{\circ }} \right)}{\sin \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \cot \left( {{600}^{\circ }} \right)=\dfrac{\left( 1/2 \right)}{\left( -\sqrt{3}/2 \right)}= -\dfrac{\sqrt{3}}{3}$
Which are the required solutions.
Note: It is to be remembered that to add two or more fractions, the denominator of both of them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken.
The various trigonometric identities and formulae should be remembered while doing these types of sums. the various Pythagorean identities should also be remembered while doing these type of questions
To simplify any given equation, it is good practice to convert all the identities into $\sin $ and $\cos $ for simplifying.
Complete step-by-step solution:
We will first see how many loops we can get from the angle ${{600}^{\circ }}$.
Each loop is completed after ${{360}^{\circ }}$ therefore, angle can be divided and written as:
$\Rightarrow {{360}^{\circ }}+{{240}^{\circ }}$
Now the angle ${{240}^{\circ }}$can be written as a difference of ${{360}^{\circ }}$ as:
\[\Rightarrow {{360}^{\circ }}+\left( {{360}^{\circ }}-{{120}^{\circ }} \right)\]
On taking the term out as common and simplifying, we get:
\[\Rightarrow 2\times {{360}^{\circ }}-{{120}^{\circ }}\]
Now since two loops are completed fully, the coterminal angle is:
\[\Rightarrow -{{120}^{\circ }}\]
Now we will find the value of $\sin \left( -{{120}^{\circ }} \right)$ and $\cos \left( -{{120}^{\circ }} \right)$.
We know that $\sin \left( \theta \right)=-\sin \theta $ and $\cos \left( -\theta \right)=\cos \theta $ therefore, we can say that:
$\Rightarrow \sin \left( {{600}^{\circ }} \right)=-\sin \left( {{120}^{\circ }} \right)$
$\Rightarrow \cos \left( {{600}^{\circ }} \right)=\cos \left( {{120}^{\circ }} \right)$
Now we the angle in both the functions can be written as:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\sin ({{60}^{\circ }}+{{60}^{\circ }})$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=\cos ({{60}^{\circ }}+{{60}^{\circ }})$
Now we know the double angle formula which is $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\cos (a+b)=\cos a\cos b-\sin a\sin b$ therefore, on using the formula, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\left( \sin \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right)+\sin \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right) \right)$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=\cos \left( {{60}^{\circ }} \right)\cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)\sin \left( {{60}^{\circ }} \right)$
Now, we know that $\sin \left( {{60}^{\circ }} \right)=\dfrac{\sqrt{3}}{2}$ and $\cos \left( {{60}^{\circ }} \right)=\dfrac{1}{2}$, on substituting the values, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2} \right)$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)= \left( \dfrac{1}{2}\times \dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)$
On simplifying, we get:
$\Rightarrow -\sin \left( {{120}^{\circ }} \right)=-\dfrac{\sqrt{3}}{2}$
$\Rightarrow \cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}$
Now from these two functions, we can evaluate the rest of the functions.
We know $\sec \theta =\dfrac{1}{\cos \theta }$ therefore, $\sec \left( {{600}^{\circ }} \right)=\dfrac{1}{\cos \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \sec \left( {{600}^{\circ }} \right)=\dfrac{1}{\left( -1/2 \right)}=-2$
We know $\csc \theta =\dfrac{1}{\sin \theta }$ therefore, $\csc \left( {{600}^{\circ }} \right)=\dfrac{1}{\sin \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \csc \left( {{600}^{\circ }} \right)=\dfrac{1}{\left( -\sqrt{3}/2 \right)}=-\dfrac{2\sqrt{3}}{3}$
We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ therefore, $\tan \left( {{600}^{\circ }} \right)=\dfrac{\sin \left( {{600}^{\circ }} \right)}{\cos \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \tan \left( {{600}^{\circ }} \right)=\dfrac{\left( -\sqrt{3}/2 \right)}{\left( 1/2 \right)}=-\sqrt{3}$
And we know $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ therefore, $\cot \left( {{600}^{\circ }} \right)=\dfrac{\cos \left( {{600}^{\circ }} \right)}{\sin \left( {{600}^{\circ }} \right)}$.
On substituting the value, we get:
$\Rightarrow \cot \left( {{600}^{\circ }} \right)=\dfrac{\left( 1/2 \right)}{\left( -\sqrt{3}/2 \right)}= -\dfrac{\sqrt{3}}{3}$
Which are the required solutions.
Note: It is to be remembered that to add two or more fractions, the denominator of both of them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken.
The various trigonometric identities and formulae should be remembered while doing these types of sums. the various Pythagorean identities should also be remembered while doing these type of questions
To simplify any given equation, it is good practice to convert all the identities into $\sin $ and $\cos $ for simplifying.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

