
Find the ${4^{th}}$ term from the beginning and ${4^{th}}$ term from the end in the expansion of ${\left( {x + \dfrac{2}{x}} \right)^9}$.
A. $652{x^2},\dfrac{{5436}}{{{x^2}}}$
B. $672{x^3},\dfrac{{5376}}{{{x^3}}}$
C. $672{x^4},\dfrac{{536}}{{{x^2}}}$
D. None of these
Answer
586.8k+ views
Hint: We will find the value of ${4^{th}}$term. So, we will break ${T_4}$into two parts such that ${T_{3 + 1}}$and then we will use a term or combination method to find the 4th term from the beginning and 4th term from the end. By using ${\left( {x + a} \right)^n} = \sum\limits_{r = 0}^n {\,\,{n_{Cr}}\,{x^{n - r}}\,{a^r}.} $
Complete step by step solution:
Solved by binomial theorem.
${\left( {x + \dfrac{2}{x}} \right)^9}$ .
${T_4} = {T_{3 + 1}} = {\left( {x + \dfrac{2}{x}} \right)^9}$
$r = 3$
${T_4} = {\,^9}{C_3}{\left( x \right)^{9 - 3}}{\left( {\dfrac{2}{x}} \right)^3}$
${T_4} = {\,^9}{C_3}\,{x^6}.\dfrac{{2 \times 2 \times 2}}{{{x^3}}}$
${T_4} = \dfrac{{9!}}{{6!\,3!}}{x^6} \times \dfrac{8}{{{x^3}}}$
${T_4} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{3 \times 2 \times 1 \times 6!}}{x^6} \times \dfrac{8}{{{x^3}}}$
${T_4} = 672\,{x^3}$
${T_7} = {\,^9}{C_{9 - 3}}\,{x^3}{\left( {\dfrac{2}{x}} \right)^6}$
${T_7} = {\,^9}{C_6}\,{x^3}{\left( {\dfrac{2}{x}} \right)^6}$
${T_7} = \dfrac{{9!}}{{6!\,3!}}\,{x^3} \times \dfrac{{2 \times 2 \times 2 \times 2 \times 2 \times 2}}{{{x^6}}}$
${T_7} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{3 \times 2 \times 1\,\,6!}} \times \dfrac{{64}}{{{x^6}}} \times {x^3}$
${T_7} = \dfrac{{5376}}{{{x^3}}}$
Note: Students should carefully solve the value of factorial otherwise you will get the wrong answer and also break the value ${T_4}$ into two parts for applying the binomial theorem.
Complete step by step solution:
Solved by binomial theorem.
${\left( {x + \dfrac{2}{x}} \right)^9}$ .
${T_4} = {T_{3 + 1}} = {\left( {x + \dfrac{2}{x}} \right)^9}$
$r = 3$
${T_4} = {\,^9}{C_3}{\left( x \right)^{9 - 3}}{\left( {\dfrac{2}{x}} \right)^3}$
${T_4} = {\,^9}{C_3}\,{x^6}.\dfrac{{2 \times 2 \times 2}}{{{x^3}}}$
${T_4} = \dfrac{{9!}}{{6!\,3!}}{x^6} \times \dfrac{8}{{{x^3}}}$
${T_4} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{3 \times 2 \times 1 \times 6!}}{x^6} \times \dfrac{8}{{{x^3}}}$
${T_4} = 672\,{x^3}$
${T_7} = {\,^9}{C_{9 - 3}}\,{x^3}{\left( {\dfrac{2}{x}} \right)^6}$
${T_7} = {\,^9}{C_6}\,{x^3}{\left( {\dfrac{2}{x}} \right)^6}$
${T_7} = \dfrac{{9!}}{{6!\,3!}}\,{x^3} \times \dfrac{{2 \times 2 \times 2 \times 2 \times 2 \times 2}}{{{x^6}}}$
${T_7} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{3 \times 2 \times 1\,\,6!}} \times \dfrac{{64}}{{{x^6}}} \times {x^3}$
${T_7} = \dfrac{{5376}}{{{x^3}}}$
Note: Students should carefully solve the value of factorial otherwise you will get the wrong answer and also break the value ${T_4}$ into two parts for applying the binomial theorem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

