
Find the 1000th term of the sequence 3, 4, 5, 6 ……….
Answer
618.6k+ views
Hint: In this question, we use the concept of Arithmetic progression. We have to use the formula of nth term of an A.P ${a_n} = a + \left( {n - 1} \right)d$ where $a$ is a first term, $d$ is a common difference of an A.P and $n$ is a number of terms in an A.P.
Complete step-by-step answer:
Given, the sequence 3, 4, 5, 6 ……….
First we check if the given sequence is Arithmetic progression or not.
Now, the common difference of given sequence is $d = 4 - 3 = 5 - 4 = 6 - 5 = 1$
So, it’s proved that the given sequence is A.P with common difference 1.
First term of an A.P $a = 3$ and the common difference of an A.P $d = 1$
Now, to find the 1000th term of the sequence so we have to use the formula of the nth term of an A.P.
So, nth term of an A.P is ${a_n} = a + \left( {n - 1} \right)d$
For the 1000th term, the value of a=3, d=1 and n=1000.
$
\Rightarrow {a_{1000}} = 3 + \left( {1000 - 1} \right) \times 1 \\
\Rightarrow {a_{1000}} = 3 + 999 \\
\Rightarrow {a_{1000}} = 1002 \\
$
Hence, the 1000th term of the sequence is 1002.
Note: Whenever we face such types of problems we use some important points. First we check if the given sequence is Arithmetic progression or not by using the common difference then find the value of first term, common difference and number of terms in an A.P. So, after using the formula of the nth term of an A.P we will get the required answer.
Complete step-by-step answer:
Given, the sequence 3, 4, 5, 6 ……….
First we check if the given sequence is Arithmetic progression or not.
Now, the common difference of given sequence is $d = 4 - 3 = 5 - 4 = 6 - 5 = 1$
So, it’s proved that the given sequence is A.P with common difference 1.
First term of an A.P $a = 3$ and the common difference of an A.P $d = 1$
Now, to find the 1000th term of the sequence so we have to use the formula of the nth term of an A.P.
So, nth term of an A.P is ${a_n} = a + \left( {n - 1} \right)d$
For the 1000th term, the value of a=3, d=1 and n=1000.
$
\Rightarrow {a_{1000}} = 3 + \left( {1000 - 1} \right) \times 1 \\
\Rightarrow {a_{1000}} = 3 + 999 \\
\Rightarrow {a_{1000}} = 1002 \\
$
Hence, the 1000th term of the sequence is 1002.
Note: Whenever we face such types of problems we use some important points. First we check if the given sequence is Arithmetic progression or not by using the common difference then find the value of first term, common difference and number of terms in an A.P. So, after using the formula of the nth term of an A.P we will get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

