
Find the $1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}$ terms.
Answer
568.8k+ views
Hint: Start with finding the general term or ${n^{th}}$ term for the given series. Notice the pattern to write the expression for ${n^{th}}$ term in terms of ‘n’ only. After finding the general term, apply the sigma operator to represent the sum of the series. Now substitute the values $\sum n = \dfrac{{n\left( {n + 1} \right)}}{2},\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{\text{ and }}\sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$ in the expression to get the expression for the sum of the series.
Complete step-by-step answer:
Here in this problem, we are given a series of the sum of the product of three numbers. We need to find the sum of the first ‘n’ number of terms of this series.
In the given series $1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}$ term, we need to first find out the ${n^{th}}$ term
We can see the pattern in the series that each term is the product of three numbers as follows:
$ \Rightarrow {\text{ First Term}} = 1 \cdot 4 \cdot 7 = \left( {0 + 1} \right) \cdot \left( {3 + 1} \right) \cdot \left( {6 + 1} \right)$
$ \Rightarrow {\text{ Second Term}} = 2 \cdot 5 \cdot 8 = \left( {1 + 1} \right) \cdot \left( {4 + 1} \right) \cdot \left( {7 + 1} \right) = \left( 2 \right) \cdot \left( {3 + 2} \right) \cdot \left( {6 + 2} \right)$
$ \Rightarrow {\text{ Third Term}} = 3 \cdot 6 \cdot 9 = \left( {2 + 1} \right) \cdot \left( {5 + 1} \right) \cdot \left( {8 + 1} \right) = \left( 3 \right) \cdot \left( {3 + 3} \right) \cdot \left( {6 + 3} \right)$
$ \Rightarrow {\text{ Fourth Term}} = 4 \cdot 7 \cdot 10 = \left( {3 + 1} \right) \cdot \left( {6 + 1} \right) \cdot \left( {9 + 1} \right) = \left( 4 \right) \cdot \left( {3 + 4} \right) \cdot \left( {6 + 4} \right)$
Similarly using this pattern, we can find the general term of the given series as:
$ \Rightarrow {\text{ }}{{\text{n}}^{th}}{\text{ term}} = \left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)$
Therefore, now the given series can be represented as:
$ \Rightarrow 1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}{\text{ }}term = \sum {\left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)} $
Here the symbol of summation represents the sum of each term with the value of ‘n’ all the natural numbers from $1{\text{ to }}n$ .
Now the summation expression can also be represented as
$ \Rightarrow \sum {\left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)} = \sum {\left( n \right) \cdot \left( {18 + 3n + 6n + {n^2}} \right)} = \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} $
As we know that the summation or sigma is distributive on addition, therefore we can write the above expression as:
$ \Rightarrow \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} = \sum {\left( {{n^3}} \right)} + \sum {\left( {9{n^2}} \right)} + \sum {\left( {18n} \right)} $
Since the constant coefficients with a variable can be taken out of the sigma, we get:
$ \Rightarrow \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} = \sum {\left( {{n^3}} \right)} + \sum {\left( {9{n^2}} \right)} + \sum {\left( {18n} \right)} = \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} $
So now we can easily calculate the sum of the series if we know the values for $\sum {\left( {{n^3}} \right)} ,\sum {\left( {{n^2}} \right)} \& \sum {\left( n \right)} $ .
According to the known values of summation of natural number series, we know that:
$ \Rightarrow \sum n = \dfrac{{n\left( {n + 1} \right)}}{2},\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{\text{ and }}\sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Let’s substitute these above values in the equation:
$ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4} + 9 \times \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 18 \times \dfrac{{n\left( {n + 1} \right)}}{2}$
We can solve it further by taking common from the right side
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = n\left( {n + 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{4} + 3 \times \dfrac{{\left( {2n + 1} \right)}}{2} + 9} \right)\]
Now we can simplify the parenthesis on the right side of the equation:
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = n\left( {n + 1} \right)\left( {\dfrac{{{n^2} + n + 12n + 6 + 36}}{4}} \right) = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 13n + 42} \right)}}{4}\]
If we use the middle term split method, then we can simplify the quadratic expression and write it as:
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 6n + 7n + 42} \right)}}{4} = \dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}\]
Therefore, we get the expression for the sum of the given series as:
$ \Rightarrow 1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}{\text{ }}term = \dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}$
Note: In questions like this, where the progression is neither arithmetic nor geometric, finding the general term plays an important role. The use of a summation or sigma operator must be done carefully. After getting the sum of the series of ‘n’ terms as $\dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}$, we can cross-check our conclusion by putting $n = 1$ , which should give the value of the first term, i.e. $1 \times 4 \times 7 = 28$ . For $n = 1$ ; \[\dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4} = \dfrac{{1 \times 2 \times 7 \times 8}}{4} = 2 \times 7 \times 2 = 28\] . Thus our answer is correct.
Complete step-by-step answer:
Here in this problem, we are given a series of the sum of the product of three numbers. We need to find the sum of the first ‘n’ number of terms of this series.
In the given series $1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}$ term, we need to first find out the ${n^{th}}$ term
We can see the pattern in the series that each term is the product of three numbers as follows:
$ \Rightarrow {\text{ First Term}} = 1 \cdot 4 \cdot 7 = \left( {0 + 1} \right) \cdot \left( {3 + 1} \right) \cdot \left( {6 + 1} \right)$
$ \Rightarrow {\text{ Second Term}} = 2 \cdot 5 \cdot 8 = \left( {1 + 1} \right) \cdot \left( {4 + 1} \right) \cdot \left( {7 + 1} \right) = \left( 2 \right) \cdot \left( {3 + 2} \right) \cdot \left( {6 + 2} \right)$
$ \Rightarrow {\text{ Third Term}} = 3 \cdot 6 \cdot 9 = \left( {2 + 1} \right) \cdot \left( {5 + 1} \right) \cdot \left( {8 + 1} \right) = \left( 3 \right) \cdot \left( {3 + 3} \right) \cdot \left( {6 + 3} \right)$
$ \Rightarrow {\text{ Fourth Term}} = 4 \cdot 7 \cdot 10 = \left( {3 + 1} \right) \cdot \left( {6 + 1} \right) \cdot \left( {9 + 1} \right) = \left( 4 \right) \cdot \left( {3 + 4} \right) \cdot \left( {6 + 4} \right)$
Similarly using this pattern, we can find the general term of the given series as:
$ \Rightarrow {\text{ }}{{\text{n}}^{th}}{\text{ term}} = \left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)$
Therefore, now the given series can be represented as:
$ \Rightarrow 1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}{\text{ }}term = \sum {\left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)} $
Here the symbol of summation represents the sum of each term with the value of ‘n’ all the natural numbers from $1{\text{ to }}n$ .
Now the summation expression can also be represented as
$ \Rightarrow \sum {\left( n \right) \cdot \left( {3 + n} \right) \cdot \left( {6 + n} \right)} = \sum {\left( n \right) \cdot \left( {18 + 3n + 6n + {n^2}} \right)} = \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} $
As we know that the summation or sigma is distributive on addition, therefore we can write the above expression as:
$ \Rightarrow \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} = \sum {\left( {{n^3}} \right)} + \sum {\left( {9{n^2}} \right)} + \sum {\left( {18n} \right)} $
Since the constant coefficients with a variable can be taken out of the sigma, we get:
$ \Rightarrow \sum {\left( {{n^3} + 9{n^2} + 18n} \right)} = \sum {\left( {{n^3}} \right)} + \sum {\left( {9{n^2}} \right)} + \sum {\left( {18n} \right)} = \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} $
So now we can easily calculate the sum of the series if we know the values for $\sum {\left( {{n^3}} \right)} ,\sum {\left( {{n^2}} \right)} \& \sum {\left( n \right)} $ .
According to the known values of summation of natural number series, we know that:
$ \Rightarrow \sum n = \dfrac{{n\left( {n + 1} \right)}}{2},\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{\text{ and }}\sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Let’s substitute these above values in the equation:
$ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4} + 9 \times \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 18 \times \dfrac{{n\left( {n + 1} \right)}}{2}$
We can solve it further by taking common from the right side
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = n\left( {n + 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{4} + 3 \times \dfrac{{\left( {2n + 1} \right)}}{2} + 9} \right)\]
Now we can simplify the parenthesis on the right side of the equation:
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = n\left( {n + 1} \right)\left( {\dfrac{{{n^2} + n + 12n + 6 + 36}}{4}} \right) = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 13n + 42} \right)}}{4}\]
If we use the middle term split method, then we can simplify the quadratic expression and write it as:
\[ \Rightarrow \sum {\left( {{n^3}} \right)} + 9\sum {\left( {{n^2}} \right)} + 18\sum {\left( n \right)} = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 6n + 7n + 42} \right)}}{4} = \dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}\]
Therefore, we get the expression for the sum of the given series as:
$ \Rightarrow 1 \cdot 4 \cdot 7 + 2 \cdot 5 \cdot 8 + 3 \cdot 6 \cdot 9 + ......... + {n^{th}}{\text{ }}term = \dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}$
Note: In questions like this, where the progression is neither arithmetic nor geometric, finding the general term plays an important role. The use of a summation or sigma operator must be done carefully. After getting the sum of the series of ‘n’ terms as $\dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4}$, we can cross-check our conclusion by putting $n = 1$ , which should give the value of the first term, i.e. $1 \times 4 \times 7 = 28$ . For $n = 1$ ; \[\dfrac{{n\left( {n + 1} \right)\left( {n + 6} \right)\left( {n + 7} \right)}}{4} = \dfrac{{1 \times 2 \times 7 \times 8}}{4} = 2 \times 7 \times 2 = 28\] . Thus our answer is correct.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

