
Find ten rational numbers between $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
Answer
620.4k+ views
Hint: Comprehending two fractions is easier when the denominator is equal for both of them. Make the denominators of both the fractions equal by multiplying them with a factor, then consider the rational numbers to find the answer.
Complete step-by-step answer:
Numbers ⟶ $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
In order to make the denominators equal for both the fractions
For $\dfrac{{ - 2}}{5}$, multiply the factor ‘4’ on the numerator and denominator
⟹$\dfrac{{ - 2 \times 4}}{{5 \times 4}}$= $\dfrac{{ - 8}}{{20}}$
For $\dfrac{1}{2}$, multiply the factor ‘10’ on the numerator and denominator
⟹$\dfrac{{1 \times 10}}{{2 \times 10}}$=$\dfrac{{10}}{{20}}$
Therefore, ten rational numbers between $\dfrac{{ - 8}}{{20}}$ and $\dfrac{{10}}{{20}}$are$\dfrac{{ - 7}}{{20}},\dfrac{{ - 6}}{{20}},\dfrac{{ - 5}}{{20}},\dfrac{{ - 4}}{{20}},\dfrac{{ - 3}}{{20}},\dfrac{1}{{20}},\dfrac{2}{{20}},\dfrac{3}{{20}},\dfrac{4}{{20}},\dfrac{5}{{20}}$.
Note –
In such types of questions the key is to make the denominators of given fractions equal by multiplying them with suitable factors. The fractions can be multiplied with suitable factors multiple times in order to get the required number of rational numbers in between them. The ratio of the given fraction is not altered when multiplied with the same factor on both the numerator and the denominator.
Complete step-by-step answer:
Numbers ⟶ $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
In order to make the denominators equal for both the fractions
For $\dfrac{{ - 2}}{5}$, multiply the factor ‘4’ on the numerator and denominator
⟹$\dfrac{{ - 2 \times 4}}{{5 \times 4}}$= $\dfrac{{ - 8}}{{20}}$
For $\dfrac{1}{2}$, multiply the factor ‘10’ on the numerator and denominator
⟹$\dfrac{{1 \times 10}}{{2 \times 10}}$=$\dfrac{{10}}{{20}}$
Therefore, ten rational numbers between $\dfrac{{ - 8}}{{20}}$ and $\dfrac{{10}}{{20}}$are$\dfrac{{ - 7}}{{20}},\dfrac{{ - 6}}{{20}},\dfrac{{ - 5}}{{20}},\dfrac{{ - 4}}{{20}},\dfrac{{ - 3}}{{20}},\dfrac{1}{{20}},\dfrac{2}{{20}},\dfrac{3}{{20}},\dfrac{4}{{20}},\dfrac{5}{{20}}$.
Note –
In such types of questions the key is to make the denominators of given fractions equal by multiplying them with suitable factors. The fractions can be multiplied with suitable factors multiple times in order to get the required number of rational numbers in between them. The ratio of the given fraction is not altered when multiplied with the same factor on both the numerator and the denominator.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

How many millions make a billion class 6 maths CBSE

What is the shape of Earth A Circle B Square C Sphere class 6 social science CBSE

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

What are the factors of 100 class 7 maths CBSE

Which are the Top 10 Largest Countries of the World?


