
Find ten rational numbers between $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
Answer
605.1k+ views
Hint: Comprehending two fractions is easier when the denominator is equal for both of them. Make the denominators of both the fractions equal by multiplying them with a factor, then consider the rational numbers to find the answer.
Complete step-by-step answer:
Numbers ⟶ $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
In order to make the denominators equal for both the fractions
For $\dfrac{{ - 2}}{5}$, multiply the factor ‘4’ on the numerator and denominator
⟹$\dfrac{{ - 2 \times 4}}{{5 \times 4}}$= $\dfrac{{ - 8}}{{20}}$
For $\dfrac{1}{2}$, multiply the factor ‘10’ on the numerator and denominator
⟹$\dfrac{{1 \times 10}}{{2 \times 10}}$=$\dfrac{{10}}{{20}}$
Therefore, ten rational numbers between $\dfrac{{ - 8}}{{20}}$ and $\dfrac{{10}}{{20}}$are$\dfrac{{ - 7}}{{20}},\dfrac{{ - 6}}{{20}},\dfrac{{ - 5}}{{20}},\dfrac{{ - 4}}{{20}},\dfrac{{ - 3}}{{20}},\dfrac{1}{{20}},\dfrac{2}{{20}},\dfrac{3}{{20}},\dfrac{4}{{20}},\dfrac{5}{{20}}$.
Note –
In such types of questions the key is to make the denominators of given fractions equal by multiplying them with suitable factors. The fractions can be multiplied with suitable factors multiple times in order to get the required number of rational numbers in between them. The ratio of the given fraction is not altered when multiplied with the same factor on both the numerator and the denominator.
Complete step-by-step answer:
Numbers ⟶ $\dfrac{{ - 2}}{5}$ and $\dfrac{1}{2}$.
In order to make the denominators equal for both the fractions
For $\dfrac{{ - 2}}{5}$, multiply the factor ‘4’ on the numerator and denominator
⟹$\dfrac{{ - 2 \times 4}}{{5 \times 4}}$= $\dfrac{{ - 8}}{{20}}$
For $\dfrac{1}{2}$, multiply the factor ‘10’ on the numerator and denominator
⟹$\dfrac{{1 \times 10}}{{2 \times 10}}$=$\dfrac{{10}}{{20}}$
Therefore, ten rational numbers between $\dfrac{{ - 8}}{{20}}$ and $\dfrac{{10}}{{20}}$are$\dfrac{{ - 7}}{{20}},\dfrac{{ - 6}}{{20}},\dfrac{{ - 5}}{{20}},\dfrac{{ - 4}}{{20}},\dfrac{{ - 3}}{{20}},\dfrac{1}{{20}},\dfrac{2}{{20}},\dfrac{3}{{20}},\dfrac{4}{{20}},\dfrac{5}{{20}}$.
Note –
In such types of questions the key is to make the denominators of given fractions equal by multiplying them with suitable factors. The fractions can be multiplied with suitable factors multiple times in order to get the required number of rational numbers in between them. The ratio of the given fraction is not altered when multiplied with the same factor on both the numerator and the denominator.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Which animal has three hearts class 11 biology CBSE


