
Find $ \sin \left( {\dfrac{x}{2}} \right)\,\,,\,\,\cos \left( {\dfrac{x}{2}} \right)\,\,and\,\,\tan \left( {\dfrac{x}{2}} \right) $ if $ \tan x = \dfrac{{ - 4}}{4} $ $ x \in IInd\,\,quadrant $ .
Answer
576k+ views
Hint: For this we first from the given $ \tan x $ we find value of $ \sin x $ and $ \cos x $ then using these values in half angle formula to find the value of $ \sin \dfrac{x}{2}\,\,and\,\,\cos \dfrac{x}{2} $ and then dividing result of two to get value of $ \tan \dfrac{x}{2} $ .
Complete step-by-step answer:
Given, $ \tan x = \dfrac{{ - 4}}{4} $
Or can be written as:
$ \tan x = - 1 $
$ \Rightarrow x = {45^0} $
Then, $ \sin x = \dfrac{1}{{\sqrt 2 }}\,\,\,and\,\,\,\cos x = \dfrac{{ - 1}}{{\sqrt 2 }} $ as $ x \in IInd\,\,quadrant $
Also, for half angles, we know that:
$ \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \cos x}}{2}} $
Substituting value in above we have:
$
\sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} \\
$
Also,
$ \cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \cos x}}{2}} $
Substituting value in above we have:
$
\cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\
\Rightarrow cox\dfrac{x}{2} = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{2}} \\
\Rightarrow \cos \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} \\
$
On dividing above two results. We have
$
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} = \dfrac{{\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} }}{{\sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} }} \\
\tan \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} \\
$
Hence, values of $ \sin \dfrac{x}{2},\,\,\cos \dfrac{x}{2}\,\,and\,\,\tan \dfrac{x}{2} $ are $ \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $ , $ \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} $ and $ \sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} $ respectively.
Note: For trigonometric function problem when solving according to quadrant one must take care of positive and negative signs according to quadrant and also to find solution of trigonometric function one should choose correct trigonometric formula to find correct solution of the problem.
Complete step-by-step answer:
Given, $ \tan x = \dfrac{{ - 4}}{4} $
Or can be written as:
$ \tan x = - 1 $
$ \Rightarrow x = {45^0} $
Then, $ \sin x = \dfrac{1}{{\sqrt 2 }}\,\,\,and\,\,\,\cos x = \dfrac{{ - 1}}{{\sqrt 2 }} $ as $ x \in IInd\,\,quadrant $
Also, for half angles, we know that:
$ \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \cos x}}{2}} $
Substituting value in above we have:
$
\sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} \\
$
Also,
$ \cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \cos x}}{2}} $
Substituting value in above we have:
$
\cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\
\Rightarrow cox\dfrac{x}{2} = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{2}} \\
\Rightarrow \cos \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} \\
$
On dividing above two results. We have
$
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} = \dfrac{{\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} }}{{\sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} }} \\
\tan \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} \\
$
Hence, values of $ \sin \dfrac{x}{2},\,\,\cos \dfrac{x}{2}\,\,and\,\,\tan \dfrac{x}{2} $ are $ \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $ , $ \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} $ and $ \sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} $ respectively.
Note: For trigonometric function problem when solving according to quadrant one must take care of positive and negative signs according to quadrant and also to find solution of trigonometric function one should choose correct trigonometric formula to find correct solution of the problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

