
Find $\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2}$ if $\tan x = \dfrac{{ - 4}}{4}$ also given that $x \in 2{\text{nd}}$ quadrant.
Answer
544.2k+ views
Hint: To find the given trigonometric functions, first find value of tangent function with help of half angle formula of tangent. And then we will use trigonometric identity consisting of secant and tangent by which we will get the value of secant and eventually cosine. And at last use sine and cosine trigonometric identity to get the value of sine function.
Formula used:
Area of the trapezium =\[\dfrac{1}{2}\left( a+b \right)\times h\], where ‘a’ and ‘b’ are the two parallel sides and ‘h’ is the height is of the trapezium.
Complete step by step solution:
In order to find values of $\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2}$ if $\tan x = \dfrac{{ - 4}}{4}$ and $x$ is in second quadrant which means interval of $x\;{\text{is}}\;\left[ {\dfrac{\pi }{2},\;\pi } \right]$ we first find the value of tangent function using its half angle formula as follows
Given
$
\Rightarrow \tan x = \dfrac{{ - 4}}{4} \\
\Rightarrow \tan x = - 1 \\
$
We know that, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}}$
$
\Rightarrow \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}} = - 1 \\
\Rightarrow 2\tan \dfrac{x}{2} = - {\tan ^2}\dfrac{x}{2} \\
\Rightarrow 2\tan \dfrac{x}{2} + {\tan ^2}\dfrac{x}{2} = 0 \\
\Rightarrow \tan \dfrac{x}{2}\left( {2 + \tan \dfrac{x}{2}} \right) = 0 \\
\Rightarrow \tan \dfrac{x}{2} = 0\;{\text{and}}\;\tan \dfrac{x}{2} = - 2 \\
$
But, it is given in the question that $x \in 2{\text{nd}}$ quadrant, and for $\tan \dfrac{x}{2} = 0$ value of $x$ will lie outside the second quadrant.
Therefore $\tan \dfrac{x}{2} = - 2$ is one of the required values
Now, we know that, ${\sec ^2}x = 1 + {\tan ^2}x \Rightarrow \sec x = \sqrt {1 + {{\tan }^2}x} $ using this, we will get
$
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{\tan }^2}\dfrac{x}{2}} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{( - 2)}^2}} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + 4} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt 5 \\
$
We are getting here two values, positive and negative but we know that cosine and secant functions are negative in the given second quadrant, but $\dfrac{x}{2}$ lies in first quadrant and in first quadrant all function are positive.
$ \Rightarrow \sec \dfrac{x}{2} = \sqrt 5 $
Also from trigonometric relations, we know that $\cos x = \dfrac{1}{{\sec x}}$
$
\Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sec \dfrac{x}{2}}} \\
\Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sqrt 5 }} \\
$
Now, from the trigonometric identity between sine and cosine, we know that ${\sin ^2}x = 1 - {\cos ^2}x \Rightarrow \sin x = \sqrt {1 - {{\cos }^2}x} $
$
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\cos }^2}\dfrac{x}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\left( {\dfrac{1}{{\sqrt 5 }}} \right)}^2}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - \dfrac{1}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{5 - 1}}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{4}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \dfrac{2}{{\sqrt 5 }} \\
$
Again we are getting here two values, but we know that sine is positive in first ,second quadrant,
Therefore $\sin \dfrac{x}{2} = \dfrac{2}{{\sqrt 5 }}$ is the required answer.
Note: In trigonometric problems like this, when finding solutions for a particular given interval then make sure to check the polarity (either positive or negative) of functional values of trigonometric functions in that interval.
Formula used:
Area of the trapezium =\[\dfrac{1}{2}\left( a+b \right)\times h\], where ‘a’ and ‘b’ are the two parallel sides and ‘h’ is the height is of the trapezium.
Complete step by step solution:
In order to find values of $\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2}$ if $\tan x = \dfrac{{ - 4}}{4}$ and $x$ is in second quadrant which means interval of $x\;{\text{is}}\;\left[ {\dfrac{\pi }{2},\;\pi } \right]$ we first find the value of tangent function using its half angle formula as follows
Given
$
\Rightarrow \tan x = \dfrac{{ - 4}}{4} \\
\Rightarrow \tan x = - 1 \\
$
We know that, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}}$
$
\Rightarrow \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}} = - 1 \\
\Rightarrow 2\tan \dfrac{x}{2} = - {\tan ^2}\dfrac{x}{2} \\
\Rightarrow 2\tan \dfrac{x}{2} + {\tan ^2}\dfrac{x}{2} = 0 \\
\Rightarrow \tan \dfrac{x}{2}\left( {2 + \tan \dfrac{x}{2}} \right) = 0 \\
\Rightarrow \tan \dfrac{x}{2} = 0\;{\text{and}}\;\tan \dfrac{x}{2} = - 2 \\
$
But, it is given in the question that $x \in 2{\text{nd}}$ quadrant, and for $\tan \dfrac{x}{2} = 0$ value of $x$ will lie outside the second quadrant.
Therefore $\tan \dfrac{x}{2} = - 2$ is one of the required values
Now, we know that, ${\sec ^2}x = 1 + {\tan ^2}x \Rightarrow \sec x = \sqrt {1 + {{\tan }^2}x} $ using this, we will get
$
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{\tan }^2}\dfrac{x}{2}} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{( - 2)}^2}} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + 4} \\
\Rightarrow \sec \dfrac{x}{2} = \pm \sqrt 5 \\
$
We are getting here two values, positive and negative but we know that cosine and secant functions are negative in the given second quadrant, but $\dfrac{x}{2}$ lies in first quadrant and in first quadrant all function are positive.
$ \Rightarrow \sec \dfrac{x}{2} = \sqrt 5 $
Also from trigonometric relations, we know that $\cos x = \dfrac{1}{{\sec x}}$
$
\Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sec \dfrac{x}{2}}} \\
\Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sqrt 5 }} \\
$
Now, from the trigonometric identity between sine and cosine, we know that ${\sin ^2}x = 1 - {\cos ^2}x \Rightarrow \sin x = \sqrt {1 - {{\cos }^2}x} $
$
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\cos }^2}\dfrac{x}{2}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\left( {\dfrac{1}{{\sqrt 5 }}} \right)}^2}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - \dfrac{1}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{5 - 1}}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{4}{5}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \dfrac{2}{{\sqrt 5 }} \\
$
Again we are getting here two values, but we know that sine is positive in first ,second quadrant,
Therefore $\sin \dfrac{x}{2} = \dfrac{2}{{\sqrt 5 }}$ is the required answer.
Note: In trigonometric problems like this, when finding solutions for a particular given interval then make sure to check the polarity (either positive or negative) of functional values of trigonometric functions in that interval.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

