
Find real value of x, if
$ {\cos ^{ - 1}}\left( {\sqrt 6 x} \right) + {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = \dfrac{\pi }{2} $
$
A.\,\,x = \pm \dfrac{1}{3} \\
B.\,\,\,x = \pm \dfrac{1}{2} \\
C.\,\,x = \pm \dfrac{1}{{\sqrt 3 }} \\
D.\,\,x = \pm \dfrac{1}{{\sqrt 2 }} \\
$
Answer
557.7k+ views
Hint: In this type of problem we shift either of cosine term to right hand side then using property to write or convert it in sine trigonometric term and then suing sine conversion formula to write sine trigonometric term to cosine trigonometric term and then ceiling cosine function from both side and then solving equation so formed to find value of ‘x’ and hence solution of given problem.
Formulas used: $ \dfrac{\pi }{2} - {\cos ^{ - 1}}A = {\sin ^{ - 1}}A $ , $ {\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\sqrt {1 - {\theta ^2}} $
Complete step by step solution:
Given equation $ {\cos ^{ - 1}}\left( {\sqrt 6 x} \right) + {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = \dfrac{\pi }{2} $
We can write above equation as:
$ {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = \dfrac{\pi }{2} - {\cos ^{ - 1}}\left( {\sqrt 6 x} \right) $
Also, we know that $ \dfrac{\pi }{2} - {\cos ^{ - 1}}(\theta ) = {\sin ^{ - 1}}(\theta ) $
Using the above mentioned identity in the above formed equation. We have,
$ {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = {\sin ^{ - 1}}\left( {\sqrt 6 x} \right) $
Also, we know that $ {\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\sqrt {1 - {\theta ^2}} $
Using above trigonometric identity in above formed equation. We have,
$
{\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = {\cos ^{ - 1}}\left[ {\sqrt {1 - {{\left( {\sqrt {6x} } \right)}^2}} } \right] \\
\Rightarrow 3\sqrt 3 {x^2} = \sqrt {1 - 6{x^2}} \;
$
Squaring both sides to solve it.
$
{\left( {3\sqrt 3 {x^2}} \right)^2} = {\left( {\sqrt {1 - 6{x^2}} } \right)^2} \\
\Rightarrow 9\left( {3{x^4}} \right) = 1 - 6{x^2} \\
\Rightarrow 27{x^4} + 6{x^2} - 1 = 0 \;
$
Taking $ {x^2} = A $ above equation becomes.
$
27{({x^2})^2} + 6({x^2}) - 1 = 0 \\
\Rightarrow 27{A^2} + 6A - 1 = 0 \;
$
Solving the above formed quadratic equation by middle term splitting method.
$
27{A^2} + 9A - 3A - 1 = 0 \\
\Rightarrow 9A\left( {3A + 1} \right) - \left( {3A + 1} \right) = 0 \\
\Rightarrow \left( {3A + 1} \right)\left( {9A - 1} \right) = 0 \\
\Rightarrow 3A + 1 = 0\,\,\,or\,\,\,9A - 1 = 0 \\
\Rightarrow A = - \dfrac{1}{3}\,\,\,or\,\,\,A = \dfrac{1}{9} \\
$
Now, substituting value of A in above. We have,
$ {x^2} = \dfrac{1}{9}\,\,\,\,or\,\,{x^2} = - \dfrac{1}{3} $
But $ {x^2} = - \dfrac{1}{3} $ is clearly not possible.
Therefore, considering
\[
{x^2} = \dfrac{1}{9} \\
\Rightarrow x = \sqrt {\dfrac{1}{9}} \\
\Rightarrow x = \pm \dfrac{1}{3} \;
\]
Therefore, from above we see that required value of ‘x’ is $ \pm \dfrac{1}{3} $
So, the correct answer is “Option C”.
Note: We can also find the value of ‘x’ in other ways. In this we directly apply trigonometric identity of $ {\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {1 - {A^2}} \sqrt {1 - {B^2}} } \right) $ on left hand side and then shifting $ {\cos ^{ - 1}} $ to right hand side to form an equation. On solving this equation by squaring and simplifying we can get the value of ‘x’ or we can say the required solution to the given problem.
Formulas used: $ \dfrac{\pi }{2} - {\cos ^{ - 1}}A = {\sin ^{ - 1}}A $ , $ {\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\sqrt {1 - {\theta ^2}} $
Complete step by step solution:
Given equation $ {\cos ^{ - 1}}\left( {\sqrt 6 x} \right) + {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = \dfrac{\pi }{2} $
We can write above equation as:
$ {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = \dfrac{\pi }{2} - {\cos ^{ - 1}}\left( {\sqrt 6 x} \right) $
Also, we know that $ \dfrac{\pi }{2} - {\cos ^{ - 1}}(\theta ) = {\sin ^{ - 1}}(\theta ) $
Using the above mentioned identity in the above formed equation. We have,
$ {\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = {\sin ^{ - 1}}\left( {\sqrt 6 x} \right) $
Also, we know that $ {\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\sqrt {1 - {\theta ^2}} $
Using above trigonometric identity in above formed equation. We have,
$
{\cos ^{ - 1}}\left( {3\sqrt 3 {x^2}} \right) = {\cos ^{ - 1}}\left[ {\sqrt {1 - {{\left( {\sqrt {6x} } \right)}^2}} } \right] \\
\Rightarrow 3\sqrt 3 {x^2} = \sqrt {1 - 6{x^2}} \;
$
Squaring both sides to solve it.
$
{\left( {3\sqrt 3 {x^2}} \right)^2} = {\left( {\sqrt {1 - 6{x^2}} } \right)^2} \\
\Rightarrow 9\left( {3{x^4}} \right) = 1 - 6{x^2} \\
\Rightarrow 27{x^4} + 6{x^2} - 1 = 0 \;
$
Taking $ {x^2} = A $ above equation becomes.
$
27{({x^2})^2} + 6({x^2}) - 1 = 0 \\
\Rightarrow 27{A^2} + 6A - 1 = 0 \;
$
Solving the above formed quadratic equation by middle term splitting method.
$
27{A^2} + 9A - 3A - 1 = 0 \\
\Rightarrow 9A\left( {3A + 1} \right) - \left( {3A + 1} \right) = 0 \\
\Rightarrow \left( {3A + 1} \right)\left( {9A - 1} \right) = 0 \\
\Rightarrow 3A + 1 = 0\,\,\,or\,\,\,9A - 1 = 0 \\
\Rightarrow A = - \dfrac{1}{3}\,\,\,or\,\,\,A = \dfrac{1}{9} \\
$
Now, substituting value of A in above. We have,
$ {x^2} = \dfrac{1}{9}\,\,\,\,or\,\,{x^2} = - \dfrac{1}{3} $
But $ {x^2} = - \dfrac{1}{3} $ is clearly not possible.
Therefore, considering
\[
{x^2} = \dfrac{1}{9} \\
\Rightarrow x = \sqrt {\dfrac{1}{9}} \\
\Rightarrow x = \pm \dfrac{1}{3} \;
\]
Therefore, from above we see that required value of ‘x’ is $ \pm \dfrac{1}{3} $
So, the correct answer is “Option C”.
Note: We can also find the value of ‘x’ in other ways. In this we directly apply trigonometric identity of $ {\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {1 - {A^2}} \sqrt {1 - {B^2}} } \right) $ on left hand side and then shifting $ {\cos ^{ - 1}} $ to right hand side to form an equation. On solving this equation by squaring and simplifying we can get the value of ‘x’ or we can say the required solution to the given problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

