Answer
Verified
423.6k+ views
Hint: We are given 3 parametric equation that define our function as $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t;$at point $\left( 11,0,2 \right)$ . We are asked to find parametric equation for the tangent line, we first find the parametric value of ‘t’ which will correspond to the point $\left( 11,0,2 \right)$ , then we will differentiate our function then find the value of that derivate at the parametric value of ‘t’, then we will get each required value and add the given point with the point obtained by derivative of our function along with ‘t’.
Complete step by step answer:
We are given 3 parametric equation of our function as –
$x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
We have to find the parametric equation of the tangent line at the point $\left( 11,0,2 \right)$ .
Now solve this we will first find the value of the parametric variable ‘t’ corresponding to the point $\left( 11,0,2 \right)$ , to do so we can compare any of the three given parametric equations.
So, in $\left( 11,0,2 \right)$ we have $x=11,y=0\text{ and }z=2$
So, we will use $y={{t}^{5}}-t$ to find the value of ‘t’,
So, $0={{t}^{5}}-t$
By simplifying, we get –
$0=t\left( {{t}^{4}}-1 \right)$
So, we get –
Either $t=0$ or $t=1$
If $t=0$ then $z={{t}^{5}}+t$ never satisfy a given point as $z=2$ and $t=0$ will give $z=0$ .
So, the correct value of t’ is 1.
So we get –
$t=1$
Now we will differentiate our function as given our function is comprise if $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
So we differentiate these and find its value at $t=1$ .
So, $\dfrac{dx}{dt}=\dfrac{10}{2\sqrt{t}}$
$at\text{ }t=1$
$\dfrac{dx}{dt}=5$ ……………………. (1)
Or $x'\left( 4 \right)=5$
$\dfrac{dy}{dt}=5{{t}^{4}}-1$
$at\text{ }t=1$
$\dfrac{dy}{dt}=5-1=4$ or $4'\left( t \right)=4$ …………………………………… (2)
And lastly
$\dfrac{dz}{dt}=5{{t}^{4}}+1$
$at\text{ }t=1$
$\dfrac{dz}{dt}=5+1=6$ or $z'\left( 1 \right)=b$ ……………………………………. (3)
Now, we have got everything we need.
Now we will find our parametric equation of the tangent line.
We know given point $p\left( {{x}_{p}},{{y}_{p}},{{z}_{p}} \right)$ and direction $v\left( a,b,c \right)$ the line pass from that point with this director is
$\begin{align}
& x=xp+at \\
& y=yp+bt \\
& z=zp+ct \\
\end{align}$
We have point $p\ne \left( 11,0,2 \right)$ and direction vector as $\left( 5,4,6 \right)$ (using 1, 2 and 3)
So, using these above, we get –
$\begin{align}
& x=11+5t \\
& y=0+4t=4t \\
& z=2+6t \\
\end{align}$
This is our required parametric form of the tangent.
Note: Remember that if the directions $\left( x',y',z' \right)$ we found has term as common. So can simplify first and then use them in the tangent line to form the parametric equation.
So, it say $\left( x',y',z' \right)=\left( 2,4,6 \right)$ then –
$\begin{align}
& x=1+2t \\
& y=2+4t \\
& z=3+6t \\
\end{align}$ is same as $\begin{align}
& x=1+t \\
& y=2+2t \\
& z=3+3t \\
\end{align}$
It was common, so it was cancelled and the equation still behaves the same.
Complete step by step answer:
We are given 3 parametric equation of our function as –
$x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
We have to find the parametric equation of the tangent line at the point $\left( 11,0,2 \right)$ .
Now solve this we will first find the value of the parametric variable ‘t’ corresponding to the point $\left( 11,0,2 \right)$ , to do so we can compare any of the three given parametric equations.
So, in $\left( 11,0,2 \right)$ we have $x=11,y=0\text{ and }z=2$
So, we will use $y={{t}^{5}}-t$ to find the value of ‘t’,
So, $0={{t}^{5}}-t$
By simplifying, we get –
$0=t\left( {{t}^{4}}-1 \right)$
So, we get –
Either $t=0$ or $t=1$
If $t=0$ then $z={{t}^{5}}+t$ never satisfy a given point as $z=2$ and $t=0$ will give $z=0$ .
So, the correct value of t’ is 1.
So we get –
$t=1$
Now we will differentiate our function as given our function is comprise if $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
So we differentiate these and find its value at $t=1$ .
So, $\dfrac{dx}{dt}=\dfrac{10}{2\sqrt{t}}$
$at\text{ }t=1$
$\dfrac{dx}{dt}=5$ ……………………. (1)
Or $x'\left( 4 \right)=5$
$\dfrac{dy}{dt}=5{{t}^{4}}-1$
$at\text{ }t=1$
$\dfrac{dy}{dt}=5-1=4$ or $4'\left( t \right)=4$ …………………………………… (2)
And lastly
$\dfrac{dz}{dt}=5{{t}^{4}}+1$
$at\text{ }t=1$
$\dfrac{dz}{dt}=5+1=6$ or $z'\left( 1 \right)=b$ ……………………………………. (3)
Now, we have got everything we need.
Now we will find our parametric equation of the tangent line.
We know given point $p\left( {{x}_{p}},{{y}_{p}},{{z}_{p}} \right)$ and direction $v\left( a,b,c \right)$ the line pass from that point with this director is
$\begin{align}
& x=xp+at \\
& y=yp+bt \\
& z=zp+ct \\
\end{align}$
We have point $p\ne \left( 11,0,2 \right)$ and direction vector as $\left( 5,4,6 \right)$ (using 1, 2 and 3)
So, using these above, we get –
$\begin{align}
& x=11+5t \\
& y=0+4t=4t \\
& z=2+6t \\
\end{align}$
This is our required parametric form of the tangent.
Note: Remember that if the directions $\left( x',y',z' \right)$ we found has term as common. So can simplify first and then use them in the tangent line to form the parametric equation.
So, it say $\left( x',y',z' \right)=\left( 2,4,6 \right)$ then –
$\begin{align}
& x=1+2t \\
& y=2+4t \\
& z=3+6t \\
\end{align}$ is same as $\begin{align}
& x=1+t \\
& y=2+2t \\
& z=3+3t \\
\end{align}$
It was common, so it was cancelled and the equation still behaves the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths