
Find out the values of angles $120^\circ $, $ - 135^\circ $, $150^\circ $, $180^\circ $, $270^\circ $ for all the six trigonometric ratios.
Answer
446.4k+ views
Hint: Here, in the given question, we need to find the values of angles $120^\circ $, $ - 135^\circ $, $150^\circ $, $180^\circ $, $270^\circ $ for all the six trigonometric ratios. We will use trigonometric formulas to get our required answer.
Formulae used:
$\sin \left( {90^\circ + \theta } \right) = \cos \theta $
$\cos \left( {90^\circ + \theta } \right) = - \sin \theta $
$\tan \left( {90^\circ + \theta } \right) = - \cot \theta $
$\cos ec\left( {90^\circ + \theta } \right) = \sec \theta $
$\sec \left( {90^\circ + \theta } \right) = - \cos ec\theta $
$\cot \left( {90^\circ + \theta } \right) = - \tan \theta $
$\sin \left( {90^\circ - \theta } \right) = \cos \theta $
$\sin \left( {90^\circ - \theta } \right) = \cos \theta $
$\cos \left( {90^\circ - \theta } \right) = \sin \theta $
$\tan \left( {90^\circ - \theta } \right) = \cot \theta $
$\cos ec\left( {90^\circ - \theta } \right) = \sec \theta $
$\sec \left( {90^\circ - \theta } \right) = \cos ec\theta $
$\cot \left( {90^\circ - \theta } \right) = \tan \theta $
Complete step by step answer:
$120^\circ $
Given below is the value of $120^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 120^\circ = \sin \left( {90^\circ + 30^\circ } \right) = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ (Value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ )
$ \Rightarrow \cos 120^\circ = \cos \left( {90^\circ + 30^\circ } \right) = - \sin 30^\circ = - \dfrac{1}{2}$ (Value of $\sin 30^\circ = \dfrac{1}{2}$ )
$ \Rightarrow \tan 120^\circ = \tan \left( {90^\circ + 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 $ (Value of $\cot 30^\circ = \sqrt 3 $ )
$ \Rightarrow \cos ec120^\circ = \cos ec\left( {90^\circ + 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ (Value of $\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ )
$ \Rightarrow \sec 120^\circ = \sec \left( {90^\circ + 30^\circ } \right) = - \cos ec30^\circ = - 2$ (Value of $\cos ec30^\circ = 2$ )
$ \Rightarrow \cot 120^\circ = \cot \left( {90^\circ + 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}$ (Value of $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$ )
$ - 135^\circ $
Given below is the value of $ - 135^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin \left( { - 135^\circ } \right) = - \sin 135^\circ = - \sin \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos 45^\circ = - \dfrac{1}{{\sqrt 2 }}$ (Value of $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ )
$ \Rightarrow \cos \left( { - 135^\circ } \right) = \cos 135^\circ = \cos \left( {1 \times 90^\circ + 45^\circ } \right) = - \sin 45^\circ = - \dfrac{1}{{\sqrt 2 }}$ (Value of $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ )
$ \Rightarrow \tan \left( { - 135^\circ } \right) = - \tan 135^\circ = - \tan \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \cot 45} \right)^\circ = 1$ (Value of $\cot 45^\circ = 1$ )
$ \Rightarrow \cos ec\left( { - 135^\circ } \right) = - \cos ec135^\circ = - \cos ec\left( {1 \times 90^\circ + 45^\circ } \right) = - sec45^\circ = - \sqrt 2 $ (Value of $\sec 45^\circ = \sqrt 2 $ )
$ \Rightarrow \sec \left( { - 135^\circ } \right) = \sec 135^\circ = \sec \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos ec45^\circ = - \sqrt 2 $ (Value of $\cos ec45^\circ = - \sqrt 2 $ )
$ \Rightarrow \cot \left( { - 135^\circ } \right) = - \cot 135^\circ = - \cot \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \tan 45^\circ } \right) = 1$ (Value of $\tan 45^\circ = 1$ )
$150^\circ $
Given below is the value of $150^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 150^\circ = \sin \left( {2 \times 90^\circ - 30^\circ } \right) = \sin 30^\circ = \dfrac{1}{2}$ (Value of $\sin 30^\circ = \dfrac{1}{2}$ )
$ \Rightarrow \cos 150^\circ = \cos \left( {2 \times 90^\circ - 30^\circ } \right) = \cos 30^\circ = - \dfrac{{\sqrt 3 }}{2}$ (Value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ )
$ \Rightarrow \tan 150^\circ = \tan \left( {2 \times 90^\circ - 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}$ (Value of $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$ )
$ \Rightarrow \cos ec150^\circ = \cos ec\left( {2 \times 90^\circ - 30^\circ } \right) = \cos ec30^\circ = 2$ (Value of $\cos ec30^\circ = 2$ )
$ \Rightarrow \sec 150^\circ = \sec \left( {2 \times 90^\circ - 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ (Value of $\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ )
$ \Rightarrow \cot 150^\circ = \cot \left( {2 \times 90^\circ - 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 $ (Value of $\cot 30^\circ = \sqrt 3 $ )
$180^\circ $
Given below is the value of $180^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 180^\circ = \sin \left( {2 \times 90^\circ - 0^\circ } \right) = \sin 0^\circ = 0$ (Value of $\sin 0^\circ = 0$ )
$ \Rightarrow \cos 180^\circ = \cos \left( {2 \times 90^\circ - 0^\circ } \right) = - \cos 0^\circ = - 1$ (Value of $\cos 0^\circ = 1$ )
$ \Rightarrow \tan 180^\circ = \tan \left( {2 \times 90^\circ + 0^\circ } \right) = \tan 0^\circ = 0$ (Value of $\tan 0^\circ = 0$ )
$ \Rightarrow \cos ec180^\circ = \cos ec\left( {2 \times 90^\circ - 0^\circ } \right) = \cos ec0^\circ = Undefined$ (Value of $\cos ec0^\circ = Undefined$ )
$ \Rightarrow \sec 180^\circ = \sec \left( {2 \times 90^\circ - 0^\circ } \right) = - \sec 0^\circ = - 1$ (Value of $\sec 0^\circ = 1$ )
$ \Rightarrow \cot 180^\circ = \cot \left( {2 \times 90^\circ + 0^\circ } \right) = \cot 0^\circ = Undefined$ (Value of $\cot 0^\circ = Undefined$ )
$270^\circ $
Given below is the value of $270^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 270^\circ = \sin \left( {3 \times 90^\circ + 0^\circ } \right) = - \cos 0^\circ = - 1$ (Value of $\cos 0^\circ = 1$ )
$ \Rightarrow \cos 270^\circ = \cos \left( {3 \times 90^\circ + 0^\circ } \right) = \sin 0^\circ = 0$ (Value of $\sin 0^\circ = 0$ )
$ \Rightarrow \tan 270^\circ = \tan \left( {3 \times 90^\circ + 0^\circ } \right) = - \cot 0^\circ = Undefined$ (Value of $\cot 0^\circ = Undefined$ )
$ \Rightarrow \cos ec270^\circ = \cos ec\left( {3 \times 90^\circ + 0^\circ } \right) = - \sec 0^\circ = - 1$ (Value of $\sec 0^\circ = 1$ )
$ \Rightarrow \sec 270^\circ = \sec \left( {3 \times 90^\circ + 0^\circ } \right) = \cos ec0^\circ = Undefined$ (Value of $\cos ec0^\circ = Undefined$ )
$ \Rightarrow \cot 270^\circ = \cot \left( {3 \times 90^\circ + 0^\circ } \right) = - \tan 0^\circ = 0$ (Value of $\tan 0^\circ = 0$ )
Note:
To solve this type of questions, one must remember all the formulae. We can also find the trigonometric values using the $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ formula, by this formula we can find the trigonometric value of $\sin e$. After this, we can use the formula ${\cos ^2}x + {\sin ^2}x = 1$ to find the value of $\cos $. We know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$ hence we can find the value of $\tan $. We also know that $\cot $, $\sec $ and $\cos ec$ are reciprocal of $\tan $, $\cos $ and $\sin e$ respectively. Hence we can easily find the value of $\cot $, $\sec $ and $\cos ec$. Hence we will get all the required values.
Formulae used:
$\sin \left( {90^\circ + \theta } \right) = \cos \theta $
$\cos \left( {90^\circ + \theta } \right) = - \sin \theta $
$\tan \left( {90^\circ + \theta } \right) = - \cot \theta $
$\cos ec\left( {90^\circ + \theta } \right) = \sec \theta $
$\sec \left( {90^\circ + \theta } \right) = - \cos ec\theta $
$\cot \left( {90^\circ + \theta } \right) = - \tan \theta $
$\sin \left( {90^\circ - \theta } \right) = \cos \theta $
$\sin \left( {90^\circ - \theta } \right) = \cos \theta $
$\cos \left( {90^\circ - \theta } \right) = \sin \theta $
$\tan \left( {90^\circ - \theta } \right) = \cot \theta $
$\cos ec\left( {90^\circ - \theta } \right) = \sec \theta $
$\sec \left( {90^\circ - \theta } \right) = \cos ec\theta $
$\cot \left( {90^\circ - \theta } \right) = \tan \theta $
Complete step by step answer:
$120^\circ $
Given below is the value of $120^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 120^\circ = \sin \left( {90^\circ + 30^\circ } \right) = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ (Value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ )
$ \Rightarrow \cos 120^\circ = \cos \left( {90^\circ + 30^\circ } \right) = - \sin 30^\circ = - \dfrac{1}{2}$ (Value of $\sin 30^\circ = \dfrac{1}{2}$ )
$ \Rightarrow \tan 120^\circ = \tan \left( {90^\circ + 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 $ (Value of $\cot 30^\circ = \sqrt 3 $ )
$ \Rightarrow \cos ec120^\circ = \cos ec\left( {90^\circ + 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ (Value of $\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ )
$ \Rightarrow \sec 120^\circ = \sec \left( {90^\circ + 30^\circ } \right) = - \cos ec30^\circ = - 2$ (Value of $\cos ec30^\circ = 2$ )
$ \Rightarrow \cot 120^\circ = \cot \left( {90^\circ + 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}$ (Value of $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$ )
$ - 135^\circ $
Given below is the value of $ - 135^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin \left( { - 135^\circ } \right) = - \sin 135^\circ = - \sin \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos 45^\circ = - \dfrac{1}{{\sqrt 2 }}$ (Value of $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ )
$ \Rightarrow \cos \left( { - 135^\circ } \right) = \cos 135^\circ = \cos \left( {1 \times 90^\circ + 45^\circ } \right) = - \sin 45^\circ = - \dfrac{1}{{\sqrt 2 }}$ (Value of $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ )
$ \Rightarrow \tan \left( { - 135^\circ } \right) = - \tan 135^\circ = - \tan \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \cot 45} \right)^\circ = 1$ (Value of $\cot 45^\circ = 1$ )
$ \Rightarrow \cos ec\left( { - 135^\circ } \right) = - \cos ec135^\circ = - \cos ec\left( {1 \times 90^\circ + 45^\circ } \right) = - sec45^\circ = - \sqrt 2 $ (Value of $\sec 45^\circ = \sqrt 2 $ )
$ \Rightarrow \sec \left( { - 135^\circ } \right) = \sec 135^\circ = \sec \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos ec45^\circ = - \sqrt 2 $ (Value of $\cos ec45^\circ = - \sqrt 2 $ )
$ \Rightarrow \cot \left( { - 135^\circ } \right) = - \cot 135^\circ = - \cot \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \tan 45^\circ } \right) = 1$ (Value of $\tan 45^\circ = 1$ )
$150^\circ $
Given below is the value of $150^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 150^\circ = \sin \left( {2 \times 90^\circ - 30^\circ } \right) = \sin 30^\circ = \dfrac{1}{2}$ (Value of $\sin 30^\circ = \dfrac{1}{2}$ )
$ \Rightarrow \cos 150^\circ = \cos \left( {2 \times 90^\circ - 30^\circ } \right) = \cos 30^\circ = - \dfrac{{\sqrt 3 }}{2}$ (Value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ )
$ \Rightarrow \tan 150^\circ = \tan \left( {2 \times 90^\circ - 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}$ (Value of $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$ )
$ \Rightarrow \cos ec150^\circ = \cos ec\left( {2 \times 90^\circ - 30^\circ } \right) = \cos ec30^\circ = 2$ (Value of $\cos ec30^\circ = 2$ )
$ \Rightarrow \sec 150^\circ = \sec \left( {2 \times 90^\circ - 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ (Value of $\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}$ )
$ \Rightarrow \cot 150^\circ = \cot \left( {2 \times 90^\circ - 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 $ (Value of $\cot 30^\circ = \sqrt 3 $ )
$180^\circ $
Given below is the value of $180^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 180^\circ = \sin \left( {2 \times 90^\circ - 0^\circ } \right) = \sin 0^\circ = 0$ (Value of $\sin 0^\circ = 0$ )
$ \Rightarrow \cos 180^\circ = \cos \left( {2 \times 90^\circ - 0^\circ } \right) = - \cos 0^\circ = - 1$ (Value of $\cos 0^\circ = 1$ )
$ \Rightarrow \tan 180^\circ = \tan \left( {2 \times 90^\circ + 0^\circ } \right) = \tan 0^\circ = 0$ (Value of $\tan 0^\circ = 0$ )
$ \Rightarrow \cos ec180^\circ = \cos ec\left( {2 \times 90^\circ - 0^\circ } \right) = \cos ec0^\circ = Undefined$ (Value of $\cos ec0^\circ = Undefined$ )
$ \Rightarrow \sec 180^\circ = \sec \left( {2 \times 90^\circ - 0^\circ } \right) = - \sec 0^\circ = - 1$ (Value of $\sec 0^\circ = 1$ )
$ \Rightarrow \cot 180^\circ = \cot \left( {2 \times 90^\circ + 0^\circ } \right) = \cot 0^\circ = Undefined$ (Value of $\cot 0^\circ = Undefined$ )
$270^\circ $
Given below is the value of $270^\circ $ for all the trigonometric ratios.
$ \Rightarrow \sin 270^\circ = \sin \left( {3 \times 90^\circ + 0^\circ } \right) = - \cos 0^\circ = - 1$ (Value of $\cos 0^\circ = 1$ )
$ \Rightarrow \cos 270^\circ = \cos \left( {3 \times 90^\circ + 0^\circ } \right) = \sin 0^\circ = 0$ (Value of $\sin 0^\circ = 0$ )
$ \Rightarrow \tan 270^\circ = \tan \left( {3 \times 90^\circ + 0^\circ } \right) = - \cot 0^\circ = Undefined$ (Value of $\cot 0^\circ = Undefined$ )
$ \Rightarrow \cos ec270^\circ = \cos ec\left( {3 \times 90^\circ + 0^\circ } \right) = - \sec 0^\circ = - 1$ (Value of $\sec 0^\circ = 1$ )
$ \Rightarrow \sec 270^\circ = \sec \left( {3 \times 90^\circ + 0^\circ } \right) = \cos ec0^\circ = Undefined$ (Value of $\cos ec0^\circ = Undefined$ )
$ \Rightarrow \cot 270^\circ = \cot \left( {3 \times 90^\circ + 0^\circ } \right) = - \tan 0^\circ = 0$ (Value of $\tan 0^\circ = 0$ )
Note:
To solve this type of questions, one must remember all the formulae. We can also find the trigonometric values using the $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ formula, by this formula we can find the trigonometric value of $\sin e$. After this, we can use the formula ${\cos ^2}x + {\sin ^2}x = 1$ to find the value of $\cos $. We know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$ hence we can find the value of $\tan $. We also know that $\cot $, $\sec $ and $\cos ec$ are reciprocal of $\tan $, $\cos $ and $\sin e$ respectively. Hence we can easily find the value of $\cot $, $\sec $ and $\cos ec$. Hence we will get all the required values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

