Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find out the mean profits from the following frequency distribution.

Profit per shop(in Rs)Number of shops $ \left( {{f}_{i}} \right) $
100 – 20010
200 – 30018
300 – 40020
400 – 50026
500 – 60030
600 – 70028
700 - 80018


Answer
VerifiedVerified
581.7k+ views
Hint: Here, first make the table with the values given and create columns of midpoint $ \left( {{x}_{i}} \right) $ , deviation $ \left( {{d}_{i}}={{x}_{i}}-a \right) $ , and $ {{f}_{i}}{{d}_{i}} $ adjacent to their values. Then find the summation of all the values in the midpoint column and find the summation of all the values in the column of $ {{f}_{i}}{{d}_{i}} $ . Use the formula of assumed mean method, $ \overline{x}=a+\dfrac{\sum\limits_{i=1}^{k}{{{f}_{i}}{{d}_{i}}}}{\sum\limits_{i=1}^{k}{{{f}_{i}}}} $ and substitute the values and find the mean profit.

Complete step-by-step answer:
We will be using the assumed mean method, here we are going to first draw the given table and adjacent to it make columns for the midpoint $ \left( {{x}_{i}} \right) $ , deviation $ \left( {{d}_{i}} \right) $ , and $ {{f}_{i}}{{d}_{i}} $ . Here, we have columns for the profit per shop, so let us find the midpoint using the first column. The midpoint is the mean of the lower and upper limit.

For the limit, 100 – 200,
 $ \begin{align}
  & {{x}_{i}}=\dfrac{100+200}{2} \\
 & =\dfrac{300}{2} \\
 & =150
\end{align} $

Similarly, make a column of midpoint for all the values.

$ {{x}_{i}} $
150
250
350
450
550
650
750


Now, let us make a column for deviation $ \left( {{d}_{i}} \right) $ , where $ {{d}_{i}}={{x}_{i}}-450 $ . Here, we took 450, because it was the median number that is the 4th number from top to down and down to top and it is also known as assumed mean (a = 450). Also, for every adjacent row, the $ {{x}_{i}} $ changes accordingly.
For the limit, 100 – 200,
 $ \begin{align}
  & {{d}_{i}}={{x}_{i}}-450 \\
 & =150-450 \\
 & =-300
\end{align} $
Similarly, make a column for the deviation for all the remaining limits.
$ {{d}_{i}}={{x}_{i}}-450 $
- 300
- 200
- 100
0
100
200
300


Now, to find the next set of values, for the column $ {{f}_{i}}{{d}_{i}} $ , multiply the values in $ {{f}_{i}} $ adjacent to $ {{d}_{i}} $ .

$ {{f}_{i}}{{d}_{i}} $
- 3000
- 3600
- 2000
0
3000
5600
5400


Now, find the sum of all the number of shops, that is $ \sum\limits_{i=1}^{k}{{{f}_{i}}=}\,150 $ and find the sum of all the values in $ {{f}_{i}}{{d}_{i}} $ , $ \sum\limits_{i=1}^{k}{{{f}_{i}}{{d}_{i}}=5400} $ .
Therefore, the final table looks like this,

Profit per shop(in Rs)Number of shops $ \left( {{f}_{i}} \right) $ $ {{x}_{i}} $ $ {{d}_{i}}={{x}_{i}}-450 $ $ {{f}_{i}}{{d}_{i}} $
100 – 20010150- 300- 3000
200 – 30018250- 200- 3600
300 – 40020350- 100- 2000
400 – 5002645000
500 – 600305501003000
600 – 700286502005600
700 - 800187503005400
$ \sum\limits_{i=1}^{k}{{{f}_{i}}=}\,150 $ $ \sum\limits_{i=1}^{k}{{{f}_{i}}{{d}_{i}}=5400} $


Now, we can use the values we got from the table to find the mean profits.
We know,
By assumed mean method,
 $ \overline{x}=a+\dfrac{\sum\limits_{i=1}^{k}{{{f}_{i}}{{d}_{i}}}}{\sum\limits_{i=1}^{k}{{{f}_{i}}}} $
where, a = 450, $ \sum\limits_{i=1}^{k}{{{f}_{i}}=}\,150 $ and $ \sum\limits_{i=1}^{k}{{{f}_{i}}{{d}_{i}}=5400} $ . Substitute these values in the formula and find the mean profits.
 $ \begin{align}
  & \overline{x}=450+\dfrac{5400}{150} \\
 & =450+\dfrac{540}{15} \\
 & =450+36 \\
 & =486
\end{align} $
Hence, the mean profit is Rs. 486.

Note: Here, we can either solve by making the table and solve it right there or you could use the method we used. There can be many mistakes while solving such questions, hence check your steps thoroughly. When you select the assumed mean (a), for an odd number of cases you can easily use the median of all the cases but for an even number of cases, choose either one of the middle ones which means we have two assumed means in even number of cases, you can choose either one of them.