
Find out the limit for \[\dfrac{{3x + 9}}{{{x^2} - 9}}\] as \[x\] approaches \[ - 3\].
Answer
442.2k+ views
Hint: The given question deals with finding out the limit for the given function as \[x\] approaches to \[ - 3\]. In order to find out the limit, we will at first factorize the denominator. After which we will eliminate the common factor. Ultimately, we will apply the limit at \[x = - 3\] to find the answer.
Complete step by step answer:
We have,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3x + 9}}{{{x^2} - 9}}\]
Here, we factorize the numerator by taking out the common factor.
Thus, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {{x^2} - 9} \right)}} - - - - - \left( 1 \right)\]
Now, we factorize the denominator using the algebraic identity of difference of squares.
The identity of difference of squares is, \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Here, we rewrite our given function as,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {{x^2} - {3^2}} \right)}}\]
Therefore, after using the identity of difference of squares, the above function becomes,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
Now, after eliminating common factors from the above function, it becomes,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{3}{{\left( {x - 3} \right)}}\]
Now, we apply the limit. Therefore, we put\[x = - 3\]
Thus we get,
\[\dfrac{3}{{ - 3 - 3}} = \dfrac{3}{{ - 6}} = - \dfrac{3}{6} = - \dfrac{1}{2}\] Which is our required limit.
Note: One of the important things to note here is that other than the standard algebraic identities used to solve limits, there are five more very important trigonometric properties of limit. These other identities are useful in solving almost every question that involves limits. They are as follows:
Let a, k and P, Q represent real numbers and \[f\] and \[g\] be functions. Such that, \[\mathop {\lim }\limits_{x \to a} f\left( x \right)\]and\[\mathop {\lim }\limits_{x \to a} g\left( x \right)\]are limits that exist and are finite. The properties for such limits are as follows:
For a constant say, k it is: \[\mathop {\lim }\limits_{x \to a} k = k\]
Constant times a function is, \[\mathop {\lim }\limits_{x \to a} k.f\left( x \right) = k\mathop {\lim }\limits_{x \to a} f\left( x \right) = ka\]
For addition and subtraction of function, the properties are\[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right) = P + Q\] and \[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right) = P - Q\]respectively.
Last but not the least, for division and multiplication of functions, the properties are, \[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)\] and \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] respectively.
Complete step by step answer:
We have,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3x + 9}}{{{x^2} - 9}}\]
Here, we factorize the numerator by taking out the common factor.
Thus, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {{x^2} - 9} \right)}} - - - - - \left( 1 \right)\]
Now, we factorize the denominator using the algebraic identity of difference of squares.
The identity of difference of squares is, \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Here, we rewrite our given function as,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {{x^2} - {3^2}} \right)}}\]
Therefore, after using the identity of difference of squares, the above function becomes,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{{3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
Now, after eliminating common factors from the above function, it becomes,
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 3} \dfrac{3}{{\left( {x - 3} \right)}}\]
Now, we apply the limit. Therefore, we put\[x = - 3\]
Thus we get,
\[\dfrac{3}{{ - 3 - 3}} = \dfrac{3}{{ - 6}} = - \dfrac{3}{6} = - \dfrac{1}{2}\] Which is our required limit.
Note: One of the important things to note here is that other than the standard algebraic identities used to solve limits, there are five more very important trigonometric properties of limit. These other identities are useful in solving almost every question that involves limits. They are as follows:
Let a, k and P, Q represent real numbers and \[f\] and \[g\] be functions. Such that, \[\mathop {\lim }\limits_{x \to a} f\left( x \right)\]and\[\mathop {\lim }\limits_{x \to a} g\left( x \right)\]are limits that exist and are finite. The properties for such limits are as follows:
For a constant say, k it is: \[\mathop {\lim }\limits_{x \to a} k = k\]
Constant times a function is, \[\mathop {\lim }\limits_{x \to a} k.f\left( x \right) = k\mathop {\lim }\limits_{x \to a} f\left( x \right) = ka\]
For addition and subtraction of function, the properties are\[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right) = P + Q\] and \[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right) = P - Q\]respectively.
Last but not the least, for division and multiplication of functions, the properties are, \[\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)\] and \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] respectively.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
