
Find n, if $\left( n+1 \right)!=12\times \left( n-1 \right)!$.
Answer
584.7k+ views
Hint: By using the definition of factorial expand each and every term till you get common terms on both sides. Expand the $\left( n+1 \right)!$ term into 2 steps and then cancel the common terms. Now you have a quadratic equation on the left hand side and a constant on right. So by subtracting the constant on both sides we can get a quadratic equation. Then use the quadratic factorization method to solve the equation and find the value of n. The value of n is the required result in this question.
Complete step-by-step solution -
Factorial:- In mathematics, factorial is an operation, denoted by “$\left( ! \right)$ “. It represents the product of all numbers between 1 and a given number.
In simple words factorial of a number can be found by multiplying all terms you get by subtracting 1 from a given number repeatedly till you get the number difference as 1. Its representation can be written as: $n!=n\times \left( n-1 \right)\times \left( n-2 \right)...................\times 1$
For example: $5!=5\times 4\times 3\times 2\times 1=120.$
Note that we assume $0!=1$ . It is standard value. It has a wide range of applications in combinations.
Given equation in the question in terms of variable n, is:
$\left( n+1 \right)!=12\times \left( n-1 \right)!$ .
Now by factorial definition, we’ll break $\left( n-1 \right)!$ by 2 steps:
$\left( n+1 \right).n.\left( n-1 \right)!=12\times \left( n-1 \right)!$ .
As we know factorials can have been zero, we cancel common terms.
$\left( n+1 \right).n.=12$
By simplifying the above equation, we can write it as:
${{n}^{2}}+n=12$
By subtraction 12 on both sides of equation, we get it as:
${{n}^{2}}+n-12=12-12$
By simplifying the above equation, we get the equation as:
${{n}^{2}}+n-12=0$
We can write the term n as $4n-3n$ , we get it as:
${{n}^{2}}+4n-3n-12=0$
By taking n common in first two terms, we get it as:
$n\left( n+4 \right)-3n-12=0$
By taking $\left( n+4 \right)$ common from whole equation, we get it as –
$\left( n+4 \right)\left( n-3 \right)=0$
By simplifying the above equation, we get its root as:
$n=3,-4$
As the question has the term $\left( n+1 \right)!$ $n+1$ must be positive.
So, n cannot be -4. So, n must be 3.
Therefore, the value of n to satisfy the given condition must be 3.
Note: In this solution we cancelled a term. We can do that step only if we know that the term is not zero. The step to avoid -4 as a result is very important. You must report only one solution. Students confuse and report both solutions. That’s why whenever you solve a question, verification is a must and compulsory step.
Complete step-by-step solution -
Factorial:- In mathematics, factorial is an operation, denoted by “$\left( ! \right)$ “. It represents the product of all numbers between 1 and a given number.
In simple words factorial of a number can be found by multiplying all terms you get by subtracting 1 from a given number repeatedly till you get the number difference as 1. Its representation can be written as: $n!=n\times \left( n-1 \right)\times \left( n-2 \right)...................\times 1$
For example: $5!=5\times 4\times 3\times 2\times 1=120.$
Note that we assume $0!=1$ . It is standard value. It has a wide range of applications in combinations.
Given equation in the question in terms of variable n, is:
$\left( n+1 \right)!=12\times \left( n-1 \right)!$ .
Now by factorial definition, we’ll break $\left( n-1 \right)!$ by 2 steps:
$\left( n+1 \right).n.\left( n-1 \right)!=12\times \left( n-1 \right)!$ .
As we know factorials can have been zero, we cancel common terms.
$\left( n+1 \right).n.=12$
By simplifying the above equation, we can write it as:
${{n}^{2}}+n=12$
By subtraction 12 on both sides of equation, we get it as:
${{n}^{2}}+n-12=12-12$
By simplifying the above equation, we get the equation as:
${{n}^{2}}+n-12=0$
We can write the term n as $4n-3n$ , we get it as:
${{n}^{2}}+4n-3n-12=0$
By taking n common in first two terms, we get it as:
$n\left( n+4 \right)-3n-12=0$
By taking $\left( n+4 \right)$ common from whole equation, we get it as –
$\left( n+4 \right)\left( n-3 \right)=0$
By simplifying the above equation, we get its root as:
$n=3,-4$
As the question has the term $\left( n+1 \right)!$ $n+1$ must be positive.
So, n cannot be -4. So, n must be 3.
Therefore, the value of n to satisfy the given condition must be 3.
Note: In this solution we cancelled a term. We can do that step only if we know that the term is not zero. The step to avoid -4 as a result is very important. You must report only one solution. Students confuse and report both solutions. That’s why whenever you solve a question, verification is a must and compulsory step.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

