
How do you find missing sides and angles of a non-right triangle, triangle ABC, angle C is 115, side b is 5, side c is 10?
Answer
549.3k+ views
Hint: In this question, we have to find the rest of the missing sides and angles. We will use the sine rule to find all the missing terms as we are given two sides and one angle in this question.
Law of sine:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Complete step by step answer:
Let’s solve the question.
First, understand how the law of sine works on triangles.
For any triangle:
In this figure, a, b, c are sides, and A, B and C are the angles.
So, it says that when we divide side ‘a’ by the sine of $ \angle A $ it is equal to side ‘b’ divided by the sine of $ \angle B $ and also equal to side ‘c’ divided by the sine of $ \angle C $ .
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now, make a figure to see what all terms are given.
According to the law of sine:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
As, b = 5, c = 10 and $ \angle C $ = $ {{115}^{\circ }} $ .
So we have to equate $ \dfrac{b}{\sin B} $ and $ \dfrac{c}{\sin C} $ to find $ \angle B $ .
$ \Rightarrow \dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now put the values:
$ \Rightarrow \dfrac{5}{\sin B}=\dfrac{10}{\sin {{115}^{\circ }}} $
Now, leave sin B alone.
$ \Rightarrow 5\times \dfrac{\sin {{115}^{\circ }}}{10}=\sin B $
$ \Rightarrow \dfrac{0.9063}{2}=\sin B $
$ \Rightarrow 0.45=\sin B $
Now, use the inverse function of sine.
$ \Rightarrow {{\sin }^{-1}}0.45=B $
So, B = 26.95
Now, by angle sum property of a triangle, the sum of three angles of a triangle is $ {{180}^{\circ }} $ . So, let’s apply angle sum property to find $ \angle A $ .
$ \Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }} $
Put the value of B = 26.95 and $ \angle C={{115}^{\circ }} $ :
$ \Rightarrow \angle A+26.95+{{115}^{\circ }}={{180}^{\circ }} $
$ \Rightarrow \angle A+141.95={{180}^{\circ }} $
$ \Rightarrow \angle A={{180}^{\circ }}-141.95 $
$ \therefore \angle A=38.05 $
Now, we have to find side ‘a’.
As we know:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now, let’s equate $ \dfrac{a}{\sin A} $ and $ \dfrac{c}{\sin C} $
Now, put the value c = 10, $ A=38.05 $ , C = $ {{115}^{\circ }} $ :
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{c}{\sin C} $
$ \Rightarrow \dfrac{a}{\sin 38.05}=\dfrac{10}{\sin {{115}^{\circ }}} $
$ \begin{align}
& \Rightarrow \dfrac{a}{0.6163}=\dfrac{10}{0.9063} \\
& \Rightarrow a=\dfrac{10}{0.9063}\times 0.6163 \\
\end{align} $
After simplifying we get:
$ \therefore $ a = 6.8
So, our final answer is: a = 6.8, $ \angle B $ = 26.95, $ \angle A=38.05 $ .
Note:
Students should know the law of sine for this question. A mistake can be made while applying inverse sine function here $ {{\sin }^{-1}}0.45=B $ . Don’t take sine function as it is. We have to apply the inverse function of sine when it goes to the other side of the equation. Be aware of calculation mistakes.
Law of sine:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Complete step by step answer:
Let’s solve the question.
First, understand how the law of sine works on triangles.
For any triangle:
In this figure, a, b, c are sides, and A, B and C are the angles.
So, it says that when we divide side ‘a’ by the sine of $ \angle A $ it is equal to side ‘b’ divided by the sine of $ \angle B $ and also equal to side ‘c’ divided by the sine of $ \angle C $ .
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now, make a figure to see what all terms are given.
According to the law of sine:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
As, b = 5, c = 10 and $ \angle C $ = $ {{115}^{\circ }} $ .
So we have to equate $ \dfrac{b}{\sin B} $ and $ \dfrac{c}{\sin C} $ to find $ \angle B $ .
$ \Rightarrow \dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now put the values:
$ \Rightarrow \dfrac{5}{\sin B}=\dfrac{10}{\sin {{115}^{\circ }}} $
Now, leave sin B alone.
$ \Rightarrow 5\times \dfrac{\sin {{115}^{\circ }}}{10}=\sin B $
$ \Rightarrow \dfrac{0.9063}{2}=\sin B $
$ \Rightarrow 0.45=\sin B $
Now, use the inverse function of sine.
$ \Rightarrow {{\sin }^{-1}}0.45=B $
So, B = 26.95
Now, by angle sum property of a triangle, the sum of three angles of a triangle is $ {{180}^{\circ }} $ . So, let’s apply angle sum property to find $ \angle A $ .
$ \Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }} $
Put the value of B = 26.95 and $ \angle C={{115}^{\circ }} $ :
$ \Rightarrow \angle A+26.95+{{115}^{\circ }}={{180}^{\circ }} $
$ \Rightarrow \angle A+141.95={{180}^{\circ }} $
$ \Rightarrow \angle A={{180}^{\circ }}-141.95 $
$ \therefore \angle A=38.05 $
Now, we have to find side ‘a’.
As we know:
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} $
Now, let’s equate $ \dfrac{a}{\sin A} $ and $ \dfrac{c}{\sin C} $
Now, put the value c = 10, $ A=38.05 $ , C = $ {{115}^{\circ }} $ :
$ \Rightarrow \dfrac{a}{\sin A}=\dfrac{c}{\sin C} $
$ \Rightarrow \dfrac{a}{\sin 38.05}=\dfrac{10}{\sin {{115}^{\circ }}} $
$ \begin{align}
& \Rightarrow \dfrac{a}{0.6163}=\dfrac{10}{0.9063} \\
& \Rightarrow a=\dfrac{10}{0.9063}\times 0.6163 \\
\end{align} $
After simplifying we get:
$ \therefore $ a = 6.8
So, our final answer is: a = 6.8, $ \angle B $ = 26.95, $ \angle A=38.05 $ .
Note:
Students should know the law of sine for this question. A mistake can be made while applying inverse sine function here $ {{\sin }^{-1}}0.45=B $ . Don’t take sine function as it is. We have to apply the inverse function of sine when it goes to the other side of the equation. Be aware of calculation mistakes.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

