
Find $\left| \overset{\to }{\mathop{x}}\, \right|$ if for a unit vector $\overset{\to }{\mathop{a}}\,$, $\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15$
Answer
588.9k+ views
Hint: Since we have the given expression $\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15$, firstly we need to simplify the equation by solving the brackets and get a simple equation in terms of $\left| \overset{\to }{\mathop{x}}\, \right|$ and $\left| \overset{\to }{\mathop{a}}\, \right|$. Then, substitute the value of $\left| \overset{\to }{\mathop{a}}\, \right|$ in the equation and then get the value of $\left| \overset{\to }{\mathop{x}}\, \right|$.
Complete step by step answer:
We are given the following expression:
$\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15......(1)$
Now, simplify equation (1) by opening the brackets and multiplying both the vectors, we get:
$\begin{align}
& \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15 \\
& \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15......(2) \\
\end{align}$
Since, we are squaring both the vectors, so square of a vector is equal to square of its magnitude, i.e. ${{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}={{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}$
So, we can write equation (2) as:
$\Rightarrow \left( {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}} \right)=15......(3)$
Since it is mentioned in the question that $\overset{\to }{\mathop{a}}\,$ is a unit vector, therefore, we have $\left| \overset{\to }{\mathop{a}}\, \right|=1$
Now, by putting the value of $\left| \overset{\to }{\mathop{a}}\, \right|$in equation (2), we can write:
$\begin{align}
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left( 1 \right)}^{2}}=15 \\
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-1=15 \\
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16 \\
& \Rightarrow \left| \overset{\to }{\mathop{x}}\, \right|=4 \\
\end{align}$
Hence, the value of $\left| \overset{\to }{\mathop{x}}\, \right|$ is 4.
Note: As we have the expression $\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15$ in the form of $\left( x-a \right)\left( x-b \right)$, we can apply the identity: ${{x}^{2}}-{{a}^{2}}=\left( x-a \right)\left( x-b \right)$.But instead of ${{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}$we need to write square of magnitude of the vector, i.e. ${{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}$. So, do not directly use the identity on the vectors, use it for the magnitude of vectors.
Also, when we get ${{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16$, we get two values of $\left| \overset{\to }{\mathop{x}}\, \right|$ i.e. +4 and -4. But magnitude cannot be negative. So, we have to neglect the negative value of $\left| \overset{\to }{\mathop{x}}\, \right|$, i.e. -4. Hence, we have $\left| \overset{\to }{\mathop{x}}\, \right|$ equal to 4.
Complete step by step answer:
We are given the following expression:
$\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15......(1)$
Now, simplify equation (1) by opening the brackets and multiplying both the vectors, we get:
$\begin{align}
& \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15 \\
& \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15......(2) \\
\end{align}$
Since, we are squaring both the vectors, so square of a vector is equal to square of its magnitude, i.e. ${{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}={{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}$
So, we can write equation (2) as:
$\Rightarrow \left( {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}} \right)=15......(3)$
Since it is mentioned in the question that $\overset{\to }{\mathop{a}}\,$ is a unit vector, therefore, we have $\left| \overset{\to }{\mathop{a}}\, \right|=1$
Now, by putting the value of $\left| \overset{\to }{\mathop{a}}\, \right|$in equation (2), we can write:
$\begin{align}
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left( 1 \right)}^{2}}=15 \\
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-1=15 \\
& \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16 \\
& \Rightarrow \left| \overset{\to }{\mathop{x}}\, \right|=4 \\
\end{align}$
Hence, the value of $\left| \overset{\to }{\mathop{x}}\, \right|$ is 4.
Note: As we have the expression $\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15$ in the form of $\left( x-a \right)\left( x-b \right)$, we can apply the identity: ${{x}^{2}}-{{a}^{2}}=\left( x-a \right)\left( x-b \right)$.But instead of ${{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}$we need to write square of magnitude of the vector, i.e. ${{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}$. So, do not directly use the identity on the vectors, use it for the magnitude of vectors.
Also, when we get ${{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16$, we get two values of $\left| \overset{\to }{\mathop{x}}\, \right|$ i.e. +4 and -4. But magnitude cannot be negative. So, we have to neglect the negative value of $\left| \overset{\to }{\mathop{x}}\, \right|$, i.e. -4. Hence, we have $\left| \overset{\to }{\mathop{x}}\, \right|$ equal to 4.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

