
How do you find \[\left( { - \dfrac{3}{2}} \right)\] factorial?
Answer
558.6k+ views
Hint: Given the expression in negative fraction form. We have to find the factorial of the negative fractional number. First, we will apply the gamma function to the expression which is extended to the range of a set of all real numbers. Then, determine the factorial of the number using the formula which satisfies the gamma function.
Formula used:
The gamma function to find the factorial of negative integers is given as:
\[\Gamma \left( t \right) = \int_0^\infty {{s^{t - 1}}{e^{ - t}}dt} \]
Which will satisfies the equation
\[s! = \Gamma \left( {s + 1} \right)\] where \[s\] is any non-negative integer.
Complete step-by-step answer:
We are given the number in fraction form. Apply the gamma function to find the factorial of the number.
\[\left( { - \dfrac{3}{2}} \right)! = \Gamma \left( { - \dfrac{3}{2} + 1} \right)\]
On simplifying the expression, we get:
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = \Gamma \left( {\dfrac{{ - 3 + 2}}{2}} \right)$
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = \Gamma \left( { - \dfrac{1}{2}} \right)$
Now, we will apply the formula $\Gamma \left( {n + 1} \right) = n \times \Gamma \left( n \right)$. Now, substitute $n = - \dfrac{1}{2}$ to compute the value of $\Gamma \left( { - \dfrac{1}{2}} \right)$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( { - \dfrac{1}{2} + 1} \right)}}{{ - \dfrac{1}{2}}}$
On simplifying the expression, we get:
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( {\dfrac{{ - 1 + 2}}{2}} \right)}}{{ - \dfrac{1}{2}}}$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( {\dfrac{1}{2}} \right)}}{{ - \dfrac{1}{2}}}$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = - 2 \times \Gamma \left( {\dfrac{1}{2}} \right)$
Now, we will substitute $\Gamma \left( {\dfrac{1}{2}} \right) = \dfrac{{\sqrt \pi }}{2}$ into the expression.
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = - 2\sqrt \pi $
Final answer: Hence the factorial of \[\left( { - \dfrac{3}{2}} \right)\] is $ - 2\sqrt \pi $
Additional information: The gamma function is defined to find the factorial for the numbers in the form non-integer or fraction form. In this function, $\Gamma \left( x \right)$ is defined for all values of $x$ and using the recurrence formula for the factorial the gamma function is written as $\Gamma \left( {x + 1} \right) = x \times \Gamma \left( x \right)$such that $x$ need not to be positive. Therefore, the function is used to calculate the factorial of a non-positive number.
Note:
In such types of questions the students mainly don't get an approach on how to solve it. In such types of questions students mainly make mistakes while applying the formula for finding factorial of a fractional integer. In such types of questions, students mainly get confused to define the recurrence relationship to calculate the factorials.
Formula used:
The gamma function to find the factorial of negative integers is given as:
\[\Gamma \left( t \right) = \int_0^\infty {{s^{t - 1}}{e^{ - t}}dt} \]
Which will satisfies the equation
\[s! = \Gamma \left( {s + 1} \right)\] where \[s\] is any non-negative integer.
Complete step-by-step answer:
We are given the number in fraction form. Apply the gamma function to find the factorial of the number.
\[\left( { - \dfrac{3}{2}} \right)! = \Gamma \left( { - \dfrac{3}{2} + 1} \right)\]
On simplifying the expression, we get:
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = \Gamma \left( {\dfrac{{ - 3 + 2}}{2}} \right)$
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = \Gamma \left( { - \dfrac{1}{2}} \right)$
Now, we will apply the formula $\Gamma \left( {n + 1} \right) = n \times \Gamma \left( n \right)$. Now, substitute $n = - \dfrac{1}{2}$ to compute the value of $\Gamma \left( { - \dfrac{1}{2}} \right)$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( { - \dfrac{1}{2} + 1} \right)}}{{ - \dfrac{1}{2}}}$
On simplifying the expression, we get:
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( {\dfrac{{ - 1 + 2}}{2}} \right)}}{{ - \dfrac{1}{2}}}$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = \dfrac{{\Gamma \left( {\dfrac{1}{2}} \right)}}{{ - \dfrac{1}{2}}}$
$ \Rightarrow \Gamma \left( { - \dfrac{1}{2}} \right) = - 2 \times \Gamma \left( {\dfrac{1}{2}} \right)$
Now, we will substitute $\Gamma \left( {\dfrac{1}{2}} \right) = \dfrac{{\sqrt \pi }}{2}$ into the expression.
$ \Rightarrow \left( { - \dfrac{3}{2}} \right)! = - 2\sqrt \pi $
Final answer: Hence the factorial of \[\left( { - \dfrac{3}{2}} \right)\] is $ - 2\sqrt \pi $
Additional information: The gamma function is defined to find the factorial for the numbers in the form non-integer or fraction form. In this function, $\Gamma \left( x \right)$ is defined for all values of $x$ and using the recurrence formula for the factorial the gamma function is written as $\Gamma \left( {x + 1} \right) = x \times \Gamma \left( x \right)$such that $x$ need not to be positive. Therefore, the function is used to calculate the factorial of a non-positive number.
Note:
In such types of questions the students mainly don't get an approach on how to solve it. In such types of questions students mainly make mistakes while applying the formula for finding factorial of a fractional integer. In such types of questions, students mainly get confused to define the recurrence relationship to calculate the factorials.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

