
Find k if the following matrices are singular
(i) $\left[ \begin{matrix}
7 & 3 \\
-2 & k \\
\end{matrix} \right]$ (ii) $\left[ \begin{matrix}
4 & 3 & 1 \\
7 & k & 1 \\
10 & 9 & 1 \\
\end{matrix} \right]$ (iii) $\left[ \begin{matrix}
k-1 & 2 & 3 \\
3 & 1 & 2 \\
1 & -2 & 4 \\
\end{matrix} \right]$
Answer
507k+ views
Hint: We first discuss the condition of a matrix being singular. We understand that to be a singular determinant value of a matrix has to be 0. All the given matrices are singular. We find their determinant value and equate it with 0 to find the value of k.
Complete step by step answer:
First, we discuss the condition of a matrix being singular.
If the determinant value of a matrix is 0 then the matrix is singular. For example: if A be a matrix and $\det \left( A \right)=\left| A \right|=0$ then we can claim that A is a singular matrix. All the other matrices are non-singular matrices.
Now we find the determinant value of the given matrices. It’s given they are all singular.
For $X=\left[ \begin{matrix}
7 & 3 \\
-2 & k \\
\end{matrix} \right]$, the $\det \left( X \right)=\left| X \right|$ value is 0.
$\left| X \right|=7\times k-\left( -2 \right)\times 3=7k+6$.
So, $7k+6=0\Rightarrow k=\dfrac{-6}{7}$.
Therefore, the value of k for $\left[ \begin{matrix}
7 & 3 \\
-2 & k \\
\end{matrix} \right]$ is $\dfrac{-6}{7}$.
For $Y=\left[ \begin{matrix}
4 & 3 & 1 \\
7 & k & 1 \\
10 & 9 & 1 \\
\end{matrix} \right]$, the $\det \left( Y \right)=\left| Y \right|$ value is 0. Expanding through third column we get
$\begin{align}
& \Rightarrow \left| Y \right|=1\times \left| \begin{matrix}
7 & k \\
10 & 9 \\
\end{matrix} \right|-1\times \left| \begin{matrix}
4 & 3 \\
10 & 9 \\
\end{matrix} \right|+1\times \left| \begin{matrix}
4 & 3 \\
7 & k \\
\end{matrix} \right| \\
& \Rightarrow \left| Y \right|=\left( 63-10k \right)-\left( 36-30 \right)+\left( 4k-21 \right)=36-6k \\
\end{align}$.
So, $36-6k=0\Rightarrow k=\dfrac{36}{6}=6$.
Therefore, the value of k for $\left[ \begin{matrix}
4 & 3 & 1 \\
7 & k & 1 \\
10 & 9 & 1 \\
\end{matrix} \right]$ is 6.
For $Z=\left[ \begin{matrix}
k-1 & 2 & 3 \\
3 & 1 & 2 \\
1 & -2 & 4 \\
\end{matrix} \right]$, the $\det \left( Z \right)=\left| Z \right|$ value is 0. Expanding through third column we get
$\begin{align}
& \Rightarrow \left| Z \right|=3\times \left| \begin{matrix}
3 & 1 \\
1 & -2 \\
\end{matrix} \right|-2\times \left| \begin{matrix}
k-1 & 2 \\
1 & -2 \\
\end{matrix} \right|+4\times \left| \begin{matrix}
k-1 & 2 \\
3 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \left| Z \right|=3\left( -6-1 \right)-2\left( 2-2k-2 \right)+4\left( k-1-6 \right)=8k-49 \\
\end{align}$.
So, $8k-49=0\Rightarrow k=\dfrac{49}{8}$.
Therefore, the value of k for $\left[ \begin{matrix}
k-1 & 2 & 3 \\
3 & 1 & 2 \\
1 & -2 & 4 \\
\end{matrix} \right]$ is $\dfrac{49}{8}$.
Note: Even though we are dealing with a singular and non-singular matrix the notion is related to its determinant value. Also, we can’t get confused with the concept of zero matrix and determinant value of a matrix being 0. First one is a matrix and the second one is a value.
Complete step by step answer:
First, we discuss the condition of a matrix being singular.
If the determinant value of a matrix is 0 then the matrix is singular. For example: if A be a matrix and $\det \left( A \right)=\left| A \right|=0$ then we can claim that A is a singular matrix. All the other matrices are non-singular matrices.
Now we find the determinant value of the given matrices. It’s given they are all singular.
For $X=\left[ \begin{matrix}
7 & 3 \\
-2 & k \\
\end{matrix} \right]$, the $\det \left( X \right)=\left| X \right|$ value is 0.
$\left| X \right|=7\times k-\left( -2 \right)\times 3=7k+6$.
So, $7k+6=0\Rightarrow k=\dfrac{-6}{7}$.
Therefore, the value of k for $\left[ \begin{matrix}
7 & 3 \\
-2 & k \\
\end{matrix} \right]$ is $\dfrac{-6}{7}$.
For $Y=\left[ \begin{matrix}
4 & 3 & 1 \\
7 & k & 1 \\
10 & 9 & 1 \\
\end{matrix} \right]$, the $\det \left( Y \right)=\left| Y \right|$ value is 0. Expanding through third column we get
$\begin{align}
& \Rightarrow \left| Y \right|=1\times \left| \begin{matrix}
7 & k \\
10 & 9 \\
\end{matrix} \right|-1\times \left| \begin{matrix}
4 & 3 \\
10 & 9 \\
\end{matrix} \right|+1\times \left| \begin{matrix}
4 & 3 \\
7 & k \\
\end{matrix} \right| \\
& \Rightarrow \left| Y \right|=\left( 63-10k \right)-\left( 36-30 \right)+\left( 4k-21 \right)=36-6k \\
\end{align}$.
So, $36-6k=0\Rightarrow k=\dfrac{36}{6}=6$.
Therefore, the value of k for $\left[ \begin{matrix}
4 & 3 & 1 \\
7 & k & 1 \\
10 & 9 & 1 \\
\end{matrix} \right]$ is 6.
For $Z=\left[ \begin{matrix}
k-1 & 2 & 3 \\
3 & 1 & 2 \\
1 & -2 & 4 \\
\end{matrix} \right]$, the $\det \left( Z \right)=\left| Z \right|$ value is 0. Expanding through third column we get
$\begin{align}
& \Rightarrow \left| Z \right|=3\times \left| \begin{matrix}
3 & 1 \\
1 & -2 \\
\end{matrix} \right|-2\times \left| \begin{matrix}
k-1 & 2 \\
1 & -2 \\
\end{matrix} \right|+4\times \left| \begin{matrix}
k-1 & 2 \\
3 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \left| Z \right|=3\left( -6-1 \right)-2\left( 2-2k-2 \right)+4\left( k-1-6 \right)=8k-49 \\
\end{align}$.
So, $8k-49=0\Rightarrow k=\dfrac{49}{8}$.
Therefore, the value of k for $\left[ \begin{matrix}
k-1 & 2 & 3 \\
3 & 1 & 2 \\
1 & -2 & 4 \\
\end{matrix} \right]$ is $\dfrac{49}{8}$.
Note: Even though we are dealing with a singular and non-singular matrix the notion is related to its determinant value. Also, we can’t get confused with the concept of zero matrix and determinant value of a matrix being 0. First one is a matrix and the second one is a value.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
