
Find $\int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $ equals:
(A) $\dfrac{{{e^x}}}{x} + c$
(B) $\dfrac{{{e^x}}}{{2{x^2}}} + c$
(C) $\dfrac{{2{e^x}}}{x} + c$
(D) $\dfrac{{2{e^x}}}{{{x^2}}} + c$
Answer
505.5k+ views
Hint: In the given question, we are required to find the integral of the function using the integration by parts method. So, we will first choose the first and second function according to the order set by the acronym ‘ILATE’. We must remember the integrals of basic functions such as exponential functions.
Complete step-by-step answer:
In the given question, we are required to find the value of the integral $\int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $.
So, we consider the given integral as a new variable.
Consider $I = \int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $
Separating both the integrals, we get,
$ \Rightarrow I = \int {\dfrac{{2{e^x}}}{x}dx} - \int {\dfrac{{2{e^x}}}{{{x^2}}}dx} $
Taking constants out of the integrals,
$ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\int {\dfrac{{{e^x}}}{{{x^2}}}dx} $
In integration by parts method, we integrate a function which is a product of two functions using a formula:
$\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $
Hence, using integration by parts method in the second integral and considering ${e^x}$ as first function and $\dfrac{1}{{{x^2}}}$ as second function, we get
$ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ {{e^x}\int {\dfrac{1}{{{x^2}}}dx - \int {\left\{ {\dfrac{d}{{dx}}\left( {{e^x}} \right)\int {\dfrac{1}{{{x^2}}}dx} } \right\}dx} } } \right]$
Now, using the power rule of integration $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$. So, we get,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ {{e^x}\left( { - \dfrac{1}{x}} \right) - \int {\left\{ { - \dfrac{{{e^x}}}{x}} \right\}dx} } \right]\]
Simplifying the expression further, we get,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ { - \dfrac{{{e^x}}}{x} + \int {\dfrac{{{e^x}}}{x}dx} } \right]\]
Opening the brackets,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ { - \dfrac{{{e^x}}}{x} + \int {\dfrac{{{e^x}}}{x}dx} } \right]\]
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} + 2\dfrac{{{e^x}}}{x} - 2\int {\dfrac{{{e^x}}}{x}dx} + c\]
Cancelling the like integrals with opposite signs, we get,
\[ \Rightarrow I = 2\dfrac{{{e^x}}}{x} + c\], where c is any arbitrary constant.
So, the value of integral $\int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $ equals \[\dfrac{{2{e^x}}}{x} + c\], where c is any arbitrary constant.
So, option (C) is the correct answer.
So, the correct answer is “Option C”.
Note: Integration by parts method can be used to solve integrals of various complex functions involving the product of functions within itself easily. In the given question, the use of integration by parts method once has made the process much easier and organized. However, this might not be the case every time. We may have to apply the integration by parts method multiple times in order to reach the final answer. Care should be taken while simplifying the expression as it can change our final answer.
Complete step-by-step answer:
In the given question, we are required to find the value of the integral $\int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $.
So, we consider the given integral as a new variable.
Consider $I = \int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $
Separating both the integrals, we get,
$ \Rightarrow I = \int {\dfrac{{2{e^x}}}{x}dx} - \int {\dfrac{{2{e^x}}}{{{x^2}}}dx} $
Taking constants out of the integrals,
$ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\int {\dfrac{{{e^x}}}{{{x^2}}}dx} $
In integration by parts method, we integrate a function which is a product of two functions using a formula:
$\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $
Hence, using integration by parts method in the second integral and considering ${e^x}$ as first function and $\dfrac{1}{{{x^2}}}$ as second function, we get
$ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ {{e^x}\int {\dfrac{1}{{{x^2}}}dx - \int {\left\{ {\dfrac{d}{{dx}}\left( {{e^x}} \right)\int {\dfrac{1}{{{x^2}}}dx} } \right\}dx} } } \right]$
Now, using the power rule of integration $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$. So, we get,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ {{e^x}\left( { - \dfrac{1}{x}} \right) - \int {\left\{ { - \dfrac{{{e^x}}}{x}} \right\}dx} } \right]\]
Simplifying the expression further, we get,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ { - \dfrac{{{e^x}}}{x} + \int {\dfrac{{{e^x}}}{x}dx} } \right]\]
Opening the brackets,
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} - 2\left[ { - \dfrac{{{e^x}}}{x} + \int {\dfrac{{{e^x}}}{x}dx} } \right]\]
\[ \Rightarrow I = 2\int {\dfrac{{{e^x}}}{x}dx} + 2\dfrac{{{e^x}}}{x} - 2\int {\dfrac{{{e^x}}}{x}dx} + c\]
Cancelling the like integrals with opposite signs, we get,
\[ \Rightarrow I = 2\dfrac{{{e^x}}}{x} + c\], where c is any arbitrary constant.
So, the value of integral $\int {{e^x}\left[ {\dfrac{2}{x} - \dfrac{2}{{{x^2}}}} \right]dx} $ equals \[\dfrac{{2{e^x}}}{x} + c\], where c is any arbitrary constant.
So, option (C) is the correct answer.
So, the correct answer is “Option C”.
Note: Integration by parts method can be used to solve integrals of various complex functions involving the product of functions within itself easily. In the given question, the use of integration by parts method once has made the process much easier and organized. However, this might not be the case every time. We may have to apply the integration by parts method multiple times in order to reach the final answer. Care should be taken while simplifying the expression as it can change our final answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

