
Find how many $7$ letter words can be formed using the letters of the word ARIHANT.
Answer
594.3k+ views
Hint- Let’s consider a case which is similar to the condition of our question. Suppose we have $n$
number of balls ($r$ number of balls are identical) and n number of boxes each to be filled with one ball.
We will first select any r boxes out of the n boxes, in $C\left( {n,r} \right)$ ways. Now we will place the identical balls in the selected boxes, one in each. We are now left with $n - r$ boxes and $n - r$ balls, which can be placed in the boxes in $(n - r)!$ ways.
Therefore the number of ways of arranging $n$ objects in a row of which $r$ objects are identical is $C\left( {n,r} \right) \times (n - r)! = \dfrac{{n!}}{{r!(n - r)!}} \times (n - r)! = \dfrac{{n!}}{{r!}}$
Complete step by step solution:
We have to find number of $7$ letter words that can be formed using the letter of word ARIHANT
Set of the letter of the word ARIHANT =$\left\{ {A,R,I,H,A,N,T} \right\}$
Total number of letters = $7$
No. of letters identical = $2$
Here we have the similar condition as given below
The number of ways of arranging $n$ objects in a row of which $r$objects are identical =
$\dfrac{{n!}}{{r!}}$
On comparing we can assume that$n = 7$and $r = 2$
Therefore the number of ways of arranging $7$letters in a row of which $2$letters is identical =$\dfrac{{7!}}{{2!}}$
Since the factorial of a positive integer$n$, denoted by $n!$, is the product of all positive integers less than or equal to n:
$n! = n \times (n - 1) \times (n - 2) \times (n - 3) \times ......... \times 3 \times 2 \times 1$
$\therefore \dfrac{{7!}}{{2!}} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{2 \times1}} = \dfrac{{5040}}{2} = 2520$
Hence the number of $7$ letter words that can be formed using the letters of word ARIHANT is $2520$.
Note:
The number of ways to arrange $n$ objects in a row, of which exactly $r$ objects are
identical, is$\dfrac{{n!}}{{r!}}$.
In a generalized form, if we wish to arrange a total no. of $n$objects, out of which $p$ are
of one type, $q$ of second type are alike, and $r$ of a third kind are same, then such a
computation is done by $\dfrac{{n!}}{{p!q!r!}}$
number of balls ($r$ number of balls are identical) and n number of boxes each to be filled with one ball.
We will first select any r boxes out of the n boxes, in $C\left( {n,r} \right)$ ways. Now we will place the identical balls in the selected boxes, one in each. We are now left with $n - r$ boxes and $n - r$ balls, which can be placed in the boxes in $(n - r)!$ ways.
Therefore the number of ways of arranging $n$ objects in a row of which $r$ objects are identical is $C\left( {n,r} \right) \times (n - r)! = \dfrac{{n!}}{{r!(n - r)!}} \times (n - r)! = \dfrac{{n!}}{{r!}}$
Complete step by step solution:
We have to find number of $7$ letter words that can be formed using the letter of word ARIHANT
Set of the letter of the word ARIHANT =$\left\{ {A,R,I,H,A,N,T} \right\}$
Total number of letters = $7$
No. of letters identical = $2$
Here we have the similar condition as given below
The number of ways of arranging $n$ objects in a row of which $r$objects are identical =
$\dfrac{{n!}}{{r!}}$
On comparing we can assume that$n = 7$and $r = 2$
Therefore the number of ways of arranging $7$letters in a row of which $2$letters is identical =$\dfrac{{7!}}{{2!}}$
Since the factorial of a positive integer$n$, denoted by $n!$, is the product of all positive integers less than or equal to n:
$n! = n \times (n - 1) \times (n - 2) \times (n - 3) \times ......... \times 3 \times 2 \times 1$
$\therefore \dfrac{{7!}}{{2!}} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{2 \times1}} = \dfrac{{5040}}{2} = 2520$
Hence the number of $7$ letter words that can be formed using the letters of word ARIHANT is $2520$.
Note:
The number of ways to arrange $n$ objects in a row, of which exactly $r$ objects are
identical, is$\dfrac{{n!}}{{r!}}$.
In a generalized form, if we wish to arrange a total no. of $n$objects, out of which $p$ are
of one type, $q$ of second type are alike, and $r$ of a third kind are same, then such a
computation is done by $\dfrac{{n!}}{{p!q!r!}}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

