
Find HCF and LCM of 120 and 144 by using Fundamental theorem of Arithmetic.
Answer
507k+ views
2 likes
Hint: Fundamental Theorem of Arithmetic states that every composite number can be expressed as a product of prime factors.
Prime numbers are numbers that are divisible only by 1 and itself. First, express both the numbers as a product of its prime factors.
Then, to find LCM, multiply the common factor with the highest power and all the remaining factors. To find HCF, take the common factors with the lowest power and multiply them.
Complete step by step answer:
First, express both the numbers as a product of prime factors.
120 can be expressed as:
144 can be expressed as:
The factors with highest power among the common factors are and . Multiply both with the remaining factor, 5 to find LCM. Therefore,
The common factors with the lowest power are and . Multiply both to find HCF. Therefore,
Hence, LCM of 120 and 144 is 720 and HCF is 24.
Note: We should not get confused in calculating HCF and LCM. An easy way to remember which factors to choose is that since HCF is the ‘highest’ common factor, factors with ‘lowest’ power are to be selected and since LCM is ‘lowest’ common multiple, factors with ‘highest’ power are to be selected along with the remaining factors.
If there are no common factors between two numbers, the H.C.F will be 1 and LCM will be the product of both numbers. Another way of finding HCF and LCM is through a division method.
Prime numbers are numbers that are divisible only by 1 and itself. First, express both the numbers as a product of its prime factors.
Then, to find LCM, multiply the common factor with the highest power and all the remaining factors. To find HCF, take the common factors with the lowest power and multiply them.
Complete step by step answer:
First, express both the numbers as a product of prime factors.
120 can be expressed as:
144 can be expressed as:
The factors with highest power among the common factors are
The common factors with the lowest power are
Hence, LCM of 120 and 144 is 720 and HCF is 24.
Note: We should not get confused in calculating HCF and LCM. An easy way to remember which factors to choose is that since HCF is the ‘highest’ common factor, factors with ‘lowest’ power are to be selected and since LCM is ‘lowest’ common multiple, factors with ‘highest’ power are to be selected along with the remaining factors.
If there are no common factors between two numbers, the H.C.F will be 1 and LCM will be the product of both numbers. Another way of finding HCF and LCM is through a division method.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

How many crores make 10 million class 7 maths CBSE

What is meant by Indian Standard Time Why do we need class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE
