
Find equation of line through the point $ (1,\; - 1,\;0) $ to intersect the lines $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $
Answer
541.8k+ views
Hint: To find equation of line through given point and which also intersect two lines, you should know that equation of a line passing through two points $ \left( {{x_1},\;{y_1},\;{z_1}} \right)\;{\text{and}}\;\left( {{x_2},\;{y_2},\;{z_2}} \right) $ can be written as $ \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}} $ , you have given one of the two points, and have to calculate coordinates of another point. Find another point by finding the intersection point of the given lines which are intersecting with the given line.
Complete step-by-step answer:
In order to find the equation of the line through the point $ (1,\; - 1,\;0) $ we have to find another point lying on the line. And for this, we will find the intersection point of the two given lines, that are $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $ because the line is also intersecting simultaneously with these lines.
We can find the point of intersection of these two lines as
$
{L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4} = p\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} = q \\
\Rightarrow \dfrac{{x - 2}}{2} = p,\;\dfrac{{y - 1}}{3} = p,\;\dfrac{{z - 3}}{4} = p\;{\text{and}}\; \Rightarrow \dfrac{{x - 4}}{4} = q,\;\dfrac{y}{5} = q,\;\dfrac{{z + 1}}{5} = q \\
\Rightarrow x = 2p + 2,\;y = 3p + 1,\;z = 4p + 3\;{\text{and}}\; \Rightarrow x = 4q + 4,\;y = 5q,\;z = 5q - 1 \\
$
Now taking these two sets of coordinates values as the coordinate second point and then we can write,
$
\dfrac{{x - 1}}{{2p + 2 - 1}} = \dfrac{{y - ( - 1)}}{{3p + 1 - ( - 1)}} = \dfrac{{z - 0}}{{4p + 3 - 0}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 4 - 1}} = \dfrac{{y - ( - 1)}}{{5q - ( - 1)}} = \dfrac{{z - 0}}{{5q - 1 - 0}} \\
\dfrac{{x - 1}}{{2p + 1}} = \dfrac{{y + 1}}{{3p + 2}} = \dfrac{z}{{4p + 3}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 3}} = \dfrac{{y + 1}}{{5q + 1}} = \dfrac{z}{{5q - 1}} \;
$
Since both the equations are representing equation of the same line, so we can write
\[
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = \dfrac{{3p + 2}}{{5q + 1}} = \dfrac{{4p + 3}}{{5q - 1}} = k({\text{say}}) \\
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = k,\;\dfrac{{3p + 2}}{{5q + 1}} = k,\;\dfrac{{4p + 3}}{{5q - 1}} = k \\
\Rightarrow 2p + 1 = 4qk + 3k - - (i),\;3p + 2 = 5qk + k - - (ii),\;4p + 3 = 5qk - k(iii) \;
\]
From equation $ (iii) - (ii), $ we get
$ \Rightarrow p + 1 = - 2k - - - (iv) $
From equation $ 4 \times (ii) - 5 \times (i), $ we get
$ \Rightarrow 2p + 3 = - 11k - - - (v) $
Again from $ (v) - 2 \times (i), $ we get
$ k = - \dfrac{1}{7} $
Putting $ k = - \dfrac{1}{7} $ in equation (iv),
$ \Rightarrow p = \dfrac{2}{7} - 1 = - \dfrac{5}{7} $
Putting $ p = - \dfrac{5}{7} $ in above equation, to get required equation,
$
\Rightarrow \dfrac{{x - 1}}{{2\left( { - \dfrac{5}{7}} \right) + 1}} = \dfrac{{y + 1}}{{3\left( { - \dfrac{5}{7}} \right) + 2}} = \dfrac{z}{{4\left( { - \dfrac{5}{7}} \right) + 3}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 10 + 7}} = \dfrac{{7y + 7}}{{ - 15 + 14}} = \dfrac{{7z}}{{ - 20 + 21}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 3}} = \dfrac{{7y + 7}}{{ - 1}} = \dfrac{{7z}}{1} \\
\Rightarrow \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} \;
$
Therefore $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ is the equation of the required line.
So, the correct answer is “ $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ ”.
Note: This type of questions, have a lot of calculations, so do cross check your every calculation because one incorrect calculation will lead you to the wrong solution. Also when solving for the values of considered constants, you will have three variables and three equations, so you can either solve it by substitution method or with the help of matrices.
Complete step-by-step answer:
In order to find the equation of the line through the point $ (1,\; - 1,\;0) $ we have to find another point lying on the line. And for this, we will find the intersection point of the two given lines, that are $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $ because the line is also intersecting simultaneously with these lines.
We can find the point of intersection of these two lines as
$
{L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4} = p\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} = q \\
\Rightarrow \dfrac{{x - 2}}{2} = p,\;\dfrac{{y - 1}}{3} = p,\;\dfrac{{z - 3}}{4} = p\;{\text{and}}\; \Rightarrow \dfrac{{x - 4}}{4} = q,\;\dfrac{y}{5} = q,\;\dfrac{{z + 1}}{5} = q \\
\Rightarrow x = 2p + 2,\;y = 3p + 1,\;z = 4p + 3\;{\text{and}}\; \Rightarrow x = 4q + 4,\;y = 5q,\;z = 5q - 1 \\
$
Now taking these two sets of coordinates values as the coordinate second point and then we can write,
$
\dfrac{{x - 1}}{{2p + 2 - 1}} = \dfrac{{y - ( - 1)}}{{3p + 1 - ( - 1)}} = \dfrac{{z - 0}}{{4p + 3 - 0}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 4 - 1}} = \dfrac{{y - ( - 1)}}{{5q - ( - 1)}} = \dfrac{{z - 0}}{{5q - 1 - 0}} \\
\dfrac{{x - 1}}{{2p + 1}} = \dfrac{{y + 1}}{{3p + 2}} = \dfrac{z}{{4p + 3}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 3}} = \dfrac{{y + 1}}{{5q + 1}} = \dfrac{z}{{5q - 1}} \;
$
Since both the equations are representing equation of the same line, so we can write
\[
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = \dfrac{{3p + 2}}{{5q + 1}} = \dfrac{{4p + 3}}{{5q - 1}} = k({\text{say}}) \\
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = k,\;\dfrac{{3p + 2}}{{5q + 1}} = k,\;\dfrac{{4p + 3}}{{5q - 1}} = k \\
\Rightarrow 2p + 1 = 4qk + 3k - - (i),\;3p + 2 = 5qk + k - - (ii),\;4p + 3 = 5qk - k(iii) \;
\]
From equation $ (iii) - (ii), $ we get
$ \Rightarrow p + 1 = - 2k - - - (iv) $
From equation $ 4 \times (ii) - 5 \times (i), $ we get
$ \Rightarrow 2p + 3 = - 11k - - - (v) $
Again from $ (v) - 2 \times (i), $ we get
$ k = - \dfrac{1}{7} $
Putting $ k = - \dfrac{1}{7} $ in equation (iv),
$ \Rightarrow p = \dfrac{2}{7} - 1 = - \dfrac{5}{7} $
Putting $ p = - \dfrac{5}{7} $ in above equation, to get required equation,
$
\Rightarrow \dfrac{{x - 1}}{{2\left( { - \dfrac{5}{7}} \right) + 1}} = \dfrac{{y + 1}}{{3\left( { - \dfrac{5}{7}} \right) + 2}} = \dfrac{z}{{4\left( { - \dfrac{5}{7}} \right) + 3}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 10 + 7}} = \dfrac{{7y + 7}}{{ - 15 + 14}} = \dfrac{{7z}}{{ - 20 + 21}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 3}} = \dfrac{{7y + 7}}{{ - 1}} = \dfrac{{7z}}{1} \\
\Rightarrow \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} \;
$
Therefore $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ is the equation of the required line.
So, the correct answer is “ $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ ”.
Note: This type of questions, have a lot of calculations, so do cross check your every calculation because one incorrect calculation will lead you to the wrong solution. Also when solving for the values of considered constants, you will have three variables and three equations, so you can either solve it by substitution method or with the help of matrices.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

