
Find equation of line through the point $ (1,\; - 1,\;0) $ to intersect the lines $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $
Answer
526.5k+ views
Hint: To find equation of line through given point and which also intersect two lines, you should know that equation of a line passing through two points $ \left( {{x_1},\;{y_1},\;{z_1}} \right)\;{\text{and}}\;\left( {{x_2},\;{y_2},\;{z_2}} \right) $ can be written as $ \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}} $ , you have given one of the two points, and have to calculate coordinates of another point. Find another point by finding the intersection point of the given lines which are intersecting with the given line.
Complete step-by-step answer:
In order to find the equation of the line through the point $ (1,\; - 1,\;0) $ we have to find another point lying on the line. And for this, we will find the intersection point of the two given lines, that are $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $ because the line is also intersecting simultaneously with these lines.
We can find the point of intersection of these two lines as
$
{L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4} = p\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} = q \\
\Rightarrow \dfrac{{x - 2}}{2} = p,\;\dfrac{{y - 1}}{3} = p,\;\dfrac{{z - 3}}{4} = p\;{\text{and}}\; \Rightarrow \dfrac{{x - 4}}{4} = q,\;\dfrac{y}{5} = q,\;\dfrac{{z + 1}}{5} = q \\
\Rightarrow x = 2p + 2,\;y = 3p + 1,\;z = 4p + 3\;{\text{and}}\; \Rightarrow x = 4q + 4,\;y = 5q,\;z = 5q - 1 \\
$
Now taking these two sets of coordinates values as the coordinate second point and then we can write,
$
\dfrac{{x - 1}}{{2p + 2 - 1}} = \dfrac{{y - ( - 1)}}{{3p + 1 - ( - 1)}} = \dfrac{{z - 0}}{{4p + 3 - 0}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 4 - 1}} = \dfrac{{y - ( - 1)}}{{5q - ( - 1)}} = \dfrac{{z - 0}}{{5q - 1 - 0}} \\
\dfrac{{x - 1}}{{2p + 1}} = \dfrac{{y + 1}}{{3p + 2}} = \dfrac{z}{{4p + 3}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 3}} = \dfrac{{y + 1}}{{5q + 1}} = \dfrac{z}{{5q - 1}} \;
$
Since both the equations are representing equation of the same line, so we can write
\[
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = \dfrac{{3p + 2}}{{5q + 1}} = \dfrac{{4p + 3}}{{5q - 1}} = k({\text{say}}) \\
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = k,\;\dfrac{{3p + 2}}{{5q + 1}} = k,\;\dfrac{{4p + 3}}{{5q - 1}} = k \\
\Rightarrow 2p + 1 = 4qk + 3k - - (i),\;3p + 2 = 5qk + k - - (ii),\;4p + 3 = 5qk - k(iii) \;
\]
From equation $ (iii) - (ii), $ we get
$ \Rightarrow p + 1 = - 2k - - - (iv) $
From equation $ 4 \times (ii) - 5 \times (i), $ we get
$ \Rightarrow 2p + 3 = - 11k - - - (v) $
Again from $ (v) - 2 \times (i), $ we get
$ k = - \dfrac{1}{7} $
Putting $ k = - \dfrac{1}{7} $ in equation (iv),
$ \Rightarrow p = \dfrac{2}{7} - 1 = - \dfrac{5}{7} $
Putting $ p = - \dfrac{5}{7} $ in above equation, to get required equation,
$
\Rightarrow \dfrac{{x - 1}}{{2\left( { - \dfrac{5}{7}} \right) + 1}} = \dfrac{{y + 1}}{{3\left( { - \dfrac{5}{7}} \right) + 2}} = \dfrac{z}{{4\left( { - \dfrac{5}{7}} \right) + 3}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 10 + 7}} = \dfrac{{7y + 7}}{{ - 15 + 14}} = \dfrac{{7z}}{{ - 20 + 21}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 3}} = \dfrac{{7y + 7}}{{ - 1}} = \dfrac{{7z}}{1} \\
\Rightarrow \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} \;
$
Therefore $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ is the equation of the required line.
So, the correct answer is “ $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ ”.
Note: This type of questions, have a lot of calculations, so do cross check your every calculation because one incorrect calculation will lead you to the wrong solution. Also when solving for the values of considered constants, you will have three variables and three equations, so you can either solve it by substitution method or with the help of matrices.
Complete step-by-step answer:
In order to find the equation of the line through the point $ (1,\; - 1,\;0) $ we have to find another point lying on the line. And for this, we will find the intersection point of the two given lines, that are $ {L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4}\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} $ because the line is also intersecting simultaneously with these lines.
We can find the point of intersection of these two lines as
$
{L_1} = \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{3} = \dfrac{{z - 3}}{4} = p\;{\text{and}}\;{L_2} = \dfrac{{x - 4}}{4} = \dfrac{y}{5} = \dfrac{{z + 1}}{5} = q \\
\Rightarrow \dfrac{{x - 2}}{2} = p,\;\dfrac{{y - 1}}{3} = p,\;\dfrac{{z - 3}}{4} = p\;{\text{and}}\; \Rightarrow \dfrac{{x - 4}}{4} = q,\;\dfrac{y}{5} = q,\;\dfrac{{z + 1}}{5} = q \\
\Rightarrow x = 2p + 2,\;y = 3p + 1,\;z = 4p + 3\;{\text{and}}\; \Rightarrow x = 4q + 4,\;y = 5q,\;z = 5q - 1 \\
$
Now taking these two sets of coordinates values as the coordinate second point and then we can write,
$
\dfrac{{x - 1}}{{2p + 2 - 1}} = \dfrac{{y - ( - 1)}}{{3p + 1 - ( - 1)}} = \dfrac{{z - 0}}{{4p + 3 - 0}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 4 - 1}} = \dfrac{{y - ( - 1)}}{{5q - ( - 1)}} = \dfrac{{z - 0}}{{5q - 1 - 0}} \\
\dfrac{{x - 1}}{{2p + 1}} = \dfrac{{y + 1}}{{3p + 2}} = \dfrac{z}{{4p + 3}}\;{\text{and}}\;\dfrac{{x - 1}}{{4q + 3}} = \dfrac{{y + 1}}{{5q + 1}} = \dfrac{z}{{5q - 1}} \;
$
Since both the equations are representing equation of the same line, so we can write
\[
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = \dfrac{{3p + 2}}{{5q + 1}} = \dfrac{{4p + 3}}{{5q - 1}} = k({\text{say}}) \\
\Rightarrow \dfrac{{2p + 1}}{{4q + 3}} = k,\;\dfrac{{3p + 2}}{{5q + 1}} = k,\;\dfrac{{4p + 3}}{{5q - 1}} = k \\
\Rightarrow 2p + 1 = 4qk + 3k - - (i),\;3p + 2 = 5qk + k - - (ii),\;4p + 3 = 5qk - k(iii) \;
\]
From equation $ (iii) - (ii), $ we get
$ \Rightarrow p + 1 = - 2k - - - (iv) $
From equation $ 4 \times (ii) - 5 \times (i), $ we get
$ \Rightarrow 2p + 3 = - 11k - - - (v) $
Again from $ (v) - 2 \times (i), $ we get
$ k = - \dfrac{1}{7} $
Putting $ k = - \dfrac{1}{7} $ in equation (iv),
$ \Rightarrow p = \dfrac{2}{7} - 1 = - \dfrac{5}{7} $
Putting $ p = - \dfrac{5}{7} $ in above equation, to get required equation,
$
\Rightarrow \dfrac{{x - 1}}{{2\left( { - \dfrac{5}{7}} \right) + 1}} = \dfrac{{y + 1}}{{3\left( { - \dfrac{5}{7}} \right) + 2}} = \dfrac{z}{{4\left( { - \dfrac{5}{7}} \right) + 3}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 10 + 7}} = \dfrac{{7y + 7}}{{ - 15 + 14}} = \dfrac{{7z}}{{ - 20 + 21}} \\
\Rightarrow \dfrac{{7x - 7}}{{ - 3}} = \dfrac{{7y + 7}}{{ - 1}} = \dfrac{{7z}}{1} \\
\Rightarrow \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} \;
$
Therefore $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ is the equation of the required line.
So, the correct answer is “ $ \dfrac{{x - 1}}{3} = \dfrac{{y + 1}}{1} = - \dfrac{z}{1} $ ”.
Note: This type of questions, have a lot of calculations, so do cross check your every calculation because one incorrect calculation will lead you to the wrong solution. Also when solving for the values of considered constants, you will have three variables and three equations, so you can either solve it by substitution method or with the help of matrices.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

