# Find each linear pair and vertically opposite angles that are present in the given figure?

Answer

Verified

334.8k+ views

**Hint**: We recall the definition of linear pair angles and vertically opposite angles in order to find them. We check linear pair angles first at each point of intersection of lines and note them. Later, we find the vertically opposite angles at each point of intersection of lines and note them.

**:**

__Complete step-by-step answer__We have a figure given that has three lines intersecting each other. We have 12 angles namely 1,2,3,….12. We need to find the angles that are linear pairs and vertically opposite angles.

Before that we recall what are linear pair angles and vertically opposite angles.

Linear pair angles are two angles that lie on the same line and the sum of those two angles are supplementary (sum of angles = $ {{180}^{o}} $ ).

Vertically opposite angles are two angles that are opposite to each other at the point where two lines intersect each other. Vertically opposite angles are always equal.

Let us first find the linear pair angles in the problem.

We can see that $ \angle 1 $ and $ \angle 4 $ lie on the same and the sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 1 $ and $ \angle 4 $ are linear pairs.

We can see that $ \angle 1 $ and $ \angle 2 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 1 $ and $ \angle 2 $ are linear pair.

We can see that $ \angle 2 $ and $ \angle 3 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 2 $ and $ \angle 3 $ are linear pair.

We can see that $ \angle 4 $ and $ \angle 3 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 4 $ and $ \angle 3 $ are linear pair.

We can see that $ \angle 5 $ and $ \angle 6 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 5 $ and $ \angle 6 $ are linear pair.

We can see that $ \angle 5 $ and $ \angle 8 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 5 $ and $ \angle 8 $ are linear pair.

We can see that $ \angle 6 $ and $ \angle 7 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 6 $ and $ \angle 7 $ are linear pair.

We can see that $ \angle 7 $ and $ \angle 8 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 7 $ and $ \angle 8 $ are linear pair.

We can see that $ \angle 9 $ and $ \angle 10 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 9 $ and $ \angle 10 $ are linear pair.

We can see that $ \angle 9 $ and $ \angle 12 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 9 $ and $ \angle 12 $ are linear pair.

We can see that $ \angle 10 $ and $ \angle 11 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 10 $ and $ \angle 11 $ are linear pair.

We can see that $ \angle 11 $ and $ \angle 12 $ lie on same and sum of those two angles is $ {{180}^{o}} $ . So, we can say $ \angle 11 $ and $ \angle 12 $ are linear pair.

Now, we find the vertically opposite angles.

We can see that $ \angle 1 $ and $ \angle 3 $ lie opposite to each other at the point of intersection of lines. So, we can say $ \angle 1 $ and $ \angle 3 $ are vertically opposite angles.

We can see that \[\angle 2\] and $ \angle 4 $ lie opposite to each other at the point of intersection of lines. So, we can say \[\angle 2\] and $ \angle 4 $ are vertically opposite angles.

We can see that \[\angle 5\] and \[\angle 7\] lie opposite to each other at the point of intersection of lines. So, we can say \[\angle 5\] and \[\angle 7\] are vertically opposite angles.

We can see that \[\angle 6\] and \[\angle 8\] lie opposite to each other at the point of intersection of lines. So, we can say \[\angle 6\] and n\[\angle 8\] are vertically opposite angles.

We can see that \[\angle 9\] and \[\angle 11\] lie opposite to each other at the point of intersection of lines. So, we can say \[\angle 9\] and \[\angle 11\] are vertically opposite angles.

We can see that \[\angle 10\] and \[\angle 12\] lie opposite to each other at the point of intersection of lines. So, we can say \[\angle 10\] and \[\angle 12\] are vertically opposite angles.

The linear pair angles are:

1) $ \angle 1 $ and $ \angle 4 $

2) $ \angle 1 $ and $ \angle 2 $

3) $ \angle 2 $ and $ \angle 3 $

4) $ \angle 4 $ and $ \angle 3 $

5) $ \angle 5 $ and $ \angle 6 $

6) $ \angle 5 $ and $ \angle 8 $

7) $ \angle 6 $ and $ \angle 7 $

8) $ \angle 7 $ and $ \angle 8 $

9) $ \angle 9 $ and $ \angle 10 $

10) $ \angle 9 $ and $ \angle 12 $

11) $ \angle 10 $ and $ \angle 11 $

12) $ \angle 11 $ and $ \angle 12 $

The vertically opposite angles are:

1) $ \angle 1 $ and $ \angle 3 $

2) \[\angle 2\] and $ \angle 4 $

3) \[\angle 5\] and \[\angle 7\]

4) \[\angle 6\] and \[\angle 8\]

5) \[\angle 9\] and \[\angle 11\]

6) \[\angle 10\] and \[\angle 12\]

**Note**: We should not confuse the definition of linear pair angles with vertically opposite angles. We always need to make sure that linear pair angles lie on a line sum is ${{180}^{o}}$. We also need to make sure that we find vertically opposite angles without any confusion.

Last updated date: 26th Sep 2023

•

Total views: 334.8k

•

Views today: 7.34k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE