
Find $ {{D}_{x}} $ and D for the equation $ 2x+3y=4 $ ; $ 7x-5y=2 $ .
Answer
596.4k+ views
Hint: We know that Cramer’s rule Cramer’s rule for expressions $ {{a}_{1}}x+{{b}_{1}}y={{c}_{1}} $ and $ {{a}_{2}}x+{{b}_{2}}y={{c}_{2}} $ , can be given as, $ D=\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) $ and $ {{D}_{x}}=\left[ \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right) $ . So, we ill compare our expressions with the general expressions and then by substituting the values in expression we will find the value of Dx and D for the equation $ 2x+3y=4 $ ; $ 7x-5y=2 $ .
Complete step-by-step answer:
In question equations $ 2x+3y=4 $ and $ 7x-5y=2 $ are given and we are asked to find Dx and D, where D is determinant of two equations and Dx is determinant of equations with respect to x. Now, to find the value of determinant Cramer’s rule for expressions $ {{a}_{1}}x+{{b}_{1}}y={{c}_{1}} $ and $ {{a}_{2}}x+{{b}_{2}}y={{c}_{2}} $ , can be given as,
$ D=\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) $ ………….(i)
Now, comparing expressions $ 2x+3y=4 $ and $ 7x-5y=2 $ , with $ {{a}_{1}}x+{{b}_{1}}y={{c}_{1}} $ and $ {{a}_{2}}x+{{b}_{2}}y={{c}_{2}} $ , we will get,
$ {{a}_{1}}=2 $ , $ {{b}_{1}}=3 $ , $ {{a}_{2}}=7 $ , $ {{b}_{2}}=-5 $ , $ {{c}_{1}}=4 $ and $ {{c}_{2}}=2 $
On substituting these values in expression (i), we will get,
$ D=\left[ \begin{matrix}
2 & 3 \\
7 & -5 \\
\end{matrix} \right]=\left( 2\left( -5 \right)-3\left( 7 \right) \right) $
$ \Rightarrow D=\left( 2\left( -5 \right)-3\left( 7 \right) \right)=-10-21=-31 $
Now, using Cramer’s rule Dx can be given as,
$ {{D}_{x}}=\left[ \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right) $
As we are considering for x, we will replace the value of x with values of constants. Now, on substituting the values in expression we will get,
$ {{D}_{x}}=\left[ \begin{matrix}
4 & 3 \\
2 & -5 \\
\end{matrix} \right]=\left( 4\left( -5 \right)-2\left( 3 \right) \right) $
$ \Rightarrow {{D}_{x}}=\left( 4\left( -5 \right)-2\left( 3 \right) \right)=-20-6=-26 $
Thus, values of Dx and D are $ -26 $ and $ -31 $ respectively.
Note: Here, we were asked to find the value of Dx so, we replaced the value of constants of x with the constant terms in expression. If, we were asked to find the value of $ {{D}_{y}} $ , then we have to replace the value of constant of y with constant such as, $ {{D}_{y}}=\left[ \begin{matrix}
{{a}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{c}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}} \right) $ . If students used this to find $ {{D}_{x}} $ , then the answer will be wrong. So, be careful while solving this type of problem.
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) $ and $ {{D}_{x}}=\left[ \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right) $ . So, we ill compare our expressions with the general expressions and then by substituting the values in expression we will find the value of Dx and D for the equation $ 2x+3y=4 $ ; $ 7x-5y=2 $ .
Complete step-by-step answer:
In question equations $ 2x+3y=4 $ and $ 7x-5y=2 $ are given and we are asked to find Dx and D, where D is determinant of two equations and Dx is determinant of equations with respect to x. Now, to find the value of determinant Cramer’s rule for expressions $ {{a}_{1}}x+{{b}_{1}}y={{c}_{1}} $ and $ {{a}_{2}}x+{{b}_{2}}y={{c}_{2}} $ , can be given as,
$ D=\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) $ ………….(i)
Now, comparing expressions $ 2x+3y=4 $ and $ 7x-5y=2 $ , with $ {{a}_{1}}x+{{b}_{1}}y={{c}_{1}} $ and $ {{a}_{2}}x+{{b}_{2}}y={{c}_{2}} $ , we will get,
$ {{a}_{1}}=2 $ , $ {{b}_{1}}=3 $ , $ {{a}_{2}}=7 $ , $ {{b}_{2}}=-5 $ , $ {{c}_{1}}=4 $ and $ {{c}_{2}}=2 $
On substituting these values in expression (i), we will get,
$ D=\left[ \begin{matrix}
2 & 3 \\
7 & -5 \\
\end{matrix} \right]=\left( 2\left( -5 \right)-3\left( 7 \right) \right) $
$ \Rightarrow D=\left( 2\left( -5 \right)-3\left( 7 \right) \right)=-10-21=-31 $
Now, using Cramer’s rule Dx can be given as,
$ {{D}_{x}}=\left[ \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right) $
As we are considering for x, we will replace the value of x with values of constants. Now, on substituting the values in expression we will get,
$ {{D}_{x}}=\left[ \begin{matrix}
4 & 3 \\
2 & -5 \\
\end{matrix} \right]=\left( 4\left( -5 \right)-2\left( 3 \right) \right) $
$ \Rightarrow {{D}_{x}}=\left( 4\left( -5 \right)-2\left( 3 \right) \right)=-20-6=-26 $
Thus, values of Dx and D are $ -26 $ and $ -31 $ respectively.
Note: Here, we were asked to find the value of Dx so, we replaced the value of constants of x with the constant terms in expression. If, we were asked to find the value of $ {{D}_{y}} $ , then we have to replace the value of constant of y with constant such as, $ {{D}_{y}}=\left[ \begin{matrix}
{{a}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{c}_{2}} \\
\end{matrix} \right]=\left( {{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}} \right) $ . If students used this to find $ {{D}_{x}} $ , then the answer will be wrong. So, be careful while solving this type of problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

