
Find $\displaystyle \lim_{x \to 0}{{\left( \cos x \right)}^{\dfrac{1}{\sin x}}}=?$
(a) 1
(b) 0
(c) 2
(d) -1
Answer
545.1k+ views
Hint: To solve this problem we are to start with using a different theorem to get our solution. The theorem says if $\displaystyle \lim_{x \to a}f\left( x \right)=\displaystyle \lim_{x \to a}g\left( x \right)=0$ such that $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}$ exists, then $\displaystyle \lim_{x \to a}{{\left[ 1+f\left( x \right) \right]}^{\dfrac{1}{g\left( x \right)}}}={{e}^{\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}}}$ . Then we will consider $f\left( x \right)=\cos x-1$ and $g\left( x \right)=\sin x$, so that the needed form of the theorem can be used. By using trigonometric identities and further simplification we will reach our desired solution.
Complete step by step solution:
According to the problem, to start with, we are to find the value of $\displaystyle \lim_{x \to 0}{{\left( \cos x \right)}^{\dfrac{1}{\sin x}}}$.
So, to get our value we will use the theorem that, if $\displaystyle \lim_{x \to a}f\left( x \right)=\displaystyle \lim_{x \to a}g\left( x \right)=0$ such that $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}$ exists, then $\displaystyle \lim_{x \to a}{{\left[ 1+f\left( x \right) \right]}^{\dfrac{1}{g\left( x \right)}}}={{e}^{\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}}}$
Now, to get our solution, we need to consider, $f\left( x \right)=\cos x-1$ and $g\left( x \right)=\sin x$
And, a = 0.
So, we start with, $\displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}\left( \cos x-1 \right)$
As, cos 0 =1, we get, $\displaystyle \lim_{x \to 0}f\left( x \right)=1-1=0$
Again for the next function, $\displaystyle \lim_{x \to 0}g\left( x \right)=\displaystyle \lim_{x \to 0}\left( \sin x \right)=0$
So, the first condition satisfies.
And we can also easily see, $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}$exists.
So, we can use our given theorem.
From, $\displaystyle \lim_{x \to a}{{\left[ 1+f\left( x \right) \right]}^{\dfrac{1}{g\left( x \right)}}}={{e}^{\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}}}$, putting the value of the f and g function,
$\displaystyle \lim_{x \to a}{\mathop{\Rightarrow \lim }}\,{{\left[ 1+\cos x-1 \right]}^{\dfrac{1}{\sin x}}}={{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}$
Now, we will try to find the value of $\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)$ .
So, $\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{-2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
Using the trigonometric formulas,$\cos 2x-1=-2{{\sin }^{2}}x$ and $\sin 2x=2\sin x\cos x$ .
Simplifying,
$\displaystyle \lim_{x \to 0}{\mathop{\Rightarrow \lim }}\,\left( -\tan \dfrac{x}{2} \right)$
Putting the value of x = 0, we get the value of the limit as 0.
So, now, from ${{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}$we get,
${{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}={{e}^{0}}=1$
Then, we get, $\displaystyle \lim_{x \to 0}{{\left( \cos x \right)}^{\dfrac{1}{\sin x}}}=1$
So, the correct answer is “Option A”.
Note: A limit theorem has been used to get the solution of the problem. This is the only way to solve this problem by using this theorem. Otherwise if we try to solve this manually the solution process would be much longer and harder to process. So, to solve this problem we must use this theorem to get the right option.
Complete step by step solution:
According to the problem, to start with, we are to find the value of $\displaystyle \lim_{x \to 0}{{\left( \cos x \right)}^{\dfrac{1}{\sin x}}}$.
So, to get our value we will use the theorem that, if $\displaystyle \lim_{x \to a}f\left( x \right)=\displaystyle \lim_{x \to a}g\left( x \right)=0$ such that $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}$ exists, then $\displaystyle \lim_{x \to a}{{\left[ 1+f\left( x \right) \right]}^{\dfrac{1}{g\left( x \right)}}}={{e}^{\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}}}$
Now, to get our solution, we need to consider, $f\left( x \right)=\cos x-1$ and $g\left( x \right)=\sin x$
And, a = 0.
So, we start with, $\displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}\left( \cos x-1 \right)$
As, cos 0 =1, we get, $\displaystyle \lim_{x \to 0}f\left( x \right)=1-1=0$
Again for the next function, $\displaystyle \lim_{x \to 0}g\left( x \right)=\displaystyle \lim_{x \to 0}\left( \sin x \right)=0$
So, the first condition satisfies.
And we can also easily see, $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}$exists.
So, we can use our given theorem.
From, $\displaystyle \lim_{x \to a}{{\left[ 1+f\left( x \right) \right]}^{\dfrac{1}{g\left( x \right)}}}={{e}^{\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}}}$, putting the value of the f and g function,
$\displaystyle \lim_{x \to a}{\mathop{\Rightarrow \lim }}\,{{\left[ 1+\cos x-1 \right]}^{\dfrac{1}{\sin x}}}={{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}$
Now, we will try to find the value of $\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)$ .
So, $\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{-2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
Using the trigonometric formulas,$\cos 2x-1=-2{{\sin }^{2}}x$ and $\sin 2x=2\sin x\cos x$ .
Simplifying,
$\displaystyle \lim_{x \to 0}{\mathop{\Rightarrow \lim }}\,\left( -\tan \dfrac{x}{2} \right)$
Putting the value of x = 0, we get the value of the limit as 0.
So, now, from ${{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}$we get,
${{e}^{\displaystyle \lim_{x \to 0}\left( \dfrac{\cos x-1}{\sin x} \right)}}={{e}^{0}}=1$
Then, we get, $\displaystyle \lim_{x \to 0}{{\left( \cos x \right)}^{\dfrac{1}{\sin x}}}=1$
So, the correct answer is “Option A”.
Note: A limit theorem has been used to get the solution of the problem. This is the only way to solve this problem by using this theorem. Otherwise if we try to solve this manually the solution process would be much longer and harder to process. So, to solve this problem we must use this theorem to get the right option.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

