
How do you find $\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}}$?
Answer
444.6k+ views
Hint: First check if the given limit is in the form ${{\left( 0 \right)}^{0}}$ or not. For ${{\left( 0 \right)}^{0}}$ form simplify using the formula $\displaystyle \lim_{x \to 0}{{\left( f\left( x \right) \right)}^{g\left( x \right)}}={{e}^{\displaystyle \lim_{x \to 0}g\left( x \right)\ln \left( f\left( x \right) \right)}}$. After simplification, put the value of ‘x’ as ‘0’ and do the necessary calculations to get the limiting value.
Complete step-by-step solution:
Putting the value of ‘x’ in the function we are getting ${{\left( \sin 0 \right)}^{0}}={{\left( 0 \right)}^{0}}$
The expression of the form $\displaystyle \lim_{x \to 0}{{\left( f\left( x \right) \right)}^{g\left( x \right)}}$ with the value ${{\left( 0 \right)}^{0}}$ can be simplified by taking as ${{e}^{\displaystyle \lim_{x \to 0}g\left( x \right)\ln \left( f\left( x \right) \right)}}$
Considering our equation $\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}}$
By comparison, $f\left( x \right)=\sin x$ and $g\left( x \right)=x$
So, it can be simplified as
$\Rightarrow {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \left( \sin x \right)}}$
Taking the value of ‘x’ as ‘0’, we get
$x\ln \left( \sin x \right)=0\times \ln \left( \sin x \right)=0$
Putting this value in the equation, we get
\[\begin{align}
& \Rightarrow {{e}^{0}} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, $\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}}=1$
Where, ‘1’ is the limiting value of the given limit.
This is the required solution of the given question.
Note: We know in logarithmic function the value of log which we are taking must be greater than ‘0’. So, in $\ln \left( \sin x \right)$, the value of $\sin x$ must be greater than ‘0’. Again as we know the range of $\sin x$ is $\left[ -1,1 \right]$, but since we have to get only those values which are greater than ‘0’, so now the range becomes $\left( 0,1 \right]$. Hence, multiplying this range of $\ln \left( \sin x \right)$ with ‘0’ we are getting $x\ln \left( \sin x \right)=0\times \ln \left( \sin x \right)=0$ as the value of $\sin x$ with range $\left( 0,1 \right]$ will always be a positive value.
Complete step-by-step solution:
Putting the value of ‘x’ in the function we are getting ${{\left( \sin 0 \right)}^{0}}={{\left( 0 \right)}^{0}}$
The expression of the form $\displaystyle \lim_{x \to 0}{{\left( f\left( x \right) \right)}^{g\left( x \right)}}$ with the value ${{\left( 0 \right)}^{0}}$ can be simplified by taking as ${{e}^{\displaystyle \lim_{x \to 0}g\left( x \right)\ln \left( f\left( x \right) \right)}}$
Considering our equation $\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}}$
By comparison, $f\left( x \right)=\sin x$ and $g\left( x \right)=x$
So, it can be simplified as
$\Rightarrow {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \left( \sin x \right)}}$
Taking the value of ‘x’ as ‘0’, we get
$x\ln \left( \sin x \right)=0\times \ln \left( \sin x \right)=0$
Putting this value in the equation, we get
\[\begin{align}
& \Rightarrow {{e}^{0}} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, $\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}}=1$
Where, ‘1’ is the limiting value of the given limit.
This is the required solution of the given question.
Note: We know in logarithmic function the value of log which we are taking must be greater than ‘0’. So, in $\ln \left( \sin x \right)$, the value of $\sin x$ must be greater than ‘0’. Again as we know the range of $\sin x$ is $\left[ -1,1 \right]$, but since we have to get only those values which are greater than ‘0’, so now the range becomes $\left( 0,1 \right]$. Hence, multiplying this range of $\ln \left( \sin x \right)$ with ‘0’ we are getting $x\ln \left( \sin x \right)=0\times \ln \left( \sin x \right)=0$ as the value of $\sin x$ with range $\left( 0,1 \right]$ will always be a positive value.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
