
Find $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$.
A. $2\sin 2\theta $
B. $2\cos 2\theta $
C. $\tan 2\theta $
D. $\cot 2\theta $
Answer
510.9k+ views
Hint: We first use multiple angle formulas and complete the summation with 1. We use the identity formulas like ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, \[2\sin \theta \cos \theta =\sin 2\theta \]. Then we take $4\left( \sin \theta +\cos \theta \right)$ common to cancel it out from the denominator.
Complete answer:
We have the trigonometric multiple angle formula where $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
We place these values in $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$ and simplify
$\begin{align}
& \dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{3\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +3\cos \theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta }{\sin \theta +\cos \theta } \\
\end{align}$
Now we try to take 4 common and factorise the numerator.
$\begin{align}
& 4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
\end{align}$
We use the cubic expansion as ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$.
So, we get ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -\sin \theta \cos \theta \right)$.
We know the identity value of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
So, ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right)$.
We now again take common of $\left( \sin \theta +\cos \theta \right)$.
$\begin{align}
& 4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)\left( 1-1+\sin \theta \cos \theta \right) \\
& =4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right) \\
\end{align}$
The fraction form becomes \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\dfrac{4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right)}{\left( \sin \theta +\cos \theta \right)}=4\sin \theta \cos \theta \].
We know the identity formula of \[2\sin \theta \cos \theta =\sin 2\theta \].
So, \[4\sin \theta \cos \theta =2\left( 2\sin \theta \cos \theta \right)=2\sin 2\theta \].
Final solution is \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=2\sin 2\theta \].
And hence the correct answer is option A.
Note:
It is important to remember that the condition to eliminate the $\left( \sin \theta +\cos \theta \right)$ from both denominator and numerator is $\left( \sin \theta +\cos \theta \right)\ne 0$. No domain is given for the variable $x$. The value of $\tan x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -\dfrac{\pi }{4},n\in \mathbb{Z}$.
Complete answer:
We have the trigonometric multiple angle formula where $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
We place these values in $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$ and simplify
$\begin{align}
& \dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{3\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +3\cos \theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta }{\sin \theta +\cos \theta } \\
\end{align}$
Now we try to take 4 common and factorise the numerator.
$\begin{align}
& 4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
\end{align}$
We use the cubic expansion as ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$.
So, we get ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -\sin \theta \cos \theta \right)$.
We know the identity value of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
So, ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right)$.
We now again take common of $\left( \sin \theta +\cos \theta \right)$.
$\begin{align}
& 4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)\left( 1-1+\sin \theta \cos \theta \right) \\
& =4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right) \\
\end{align}$
The fraction form becomes \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\dfrac{4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right)}{\left( \sin \theta +\cos \theta \right)}=4\sin \theta \cos \theta \].
We know the identity formula of \[2\sin \theta \cos \theta =\sin 2\theta \].
So, \[4\sin \theta \cos \theta =2\left( 2\sin \theta \cos \theta \right)=2\sin 2\theta \].
Final solution is \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=2\sin 2\theta \].
And hence the correct answer is option A.
Note:
It is important to remember that the condition to eliminate the $\left( \sin \theta +\cos \theta \right)$ from both denominator and numerator is $\left( \sin \theta +\cos \theta \right)\ne 0$. No domain is given for the variable $x$. The value of $\tan x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -\dfrac{\pi }{4},n\in \mathbb{Z}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

