
Find $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$.
A. $2\sin 2\theta $
B. $2\cos 2\theta $
C. $\tan 2\theta $
D. $\cot 2\theta $
Answer
496.5k+ views
Hint: We first use multiple angle formulas and complete the summation with 1. We use the identity formulas like ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, \[2\sin \theta \cos \theta =\sin 2\theta \]. Then we take $4\left( \sin \theta +\cos \theta \right)$ common to cancel it out from the denominator.
Complete answer:
We have the trigonometric multiple angle formula where $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
We place these values in $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$ and simplify
$\begin{align}
& \dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{3\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +3\cos \theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta }{\sin \theta +\cos \theta } \\
\end{align}$
Now we try to take 4 common and factorise the numerator.
$\begin{align}
& 4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
\end{align}$
We use the cubic expansion as ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$.
So, we get ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -\sin \theta \cos \theta \right)$.
We know the identity value of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
So, ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right)$.
We now again take common of $\left( \sin \theta +\cos \theta \right)$.
$\begin{align}
& 4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)\left( 1-1+\sin \theta \cos \theta \right) \\
& =4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right) \\
\end{align}$
The fraction form becomes \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\dfrac{4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right)}{\left( \sin \theta +\cos \theta \right)}=4\sin \theta \cos \theta \].
We know the identity formula of \[2\sin \theta \cos \theta =\sin 2\theta \].
So, \[4\sin \theta \cos \theta =2\left( 2\sin \theta \cos \theta \right)=2\sin 2\theta \].
Final solution is \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=2\sin 2\theta \].
And hence the correct answer is option A.
Note:
It is important to remember that the condition to eliminate the $\left( \sin \theta +\cos \theta \right)$ from both denominator and numerator is $\left( \sin \theta +\cos \theta \right)\ne 0$. No domain is given for the variable $x$. The value of $\tan x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -\dfrac{\pi }{4},n\in \mathbb{Z}$.
Complete answer:
We have the trigonometric multiple angle formula where $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
We place these values in $\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1$ and simplify
$\begin{align}
& \dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{3\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +3\cos \theta }{\sin \theta +\cos \theta }+1 \\
& =\dfrac{4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta }{\sin \theta +\cos \theta } \\
\end{align}$
Now we try to take 4 common and factorise the numerator.
$\begin{align}
& 4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
\end{align}$
We use the cubic expansion as ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$.
So, we get ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -\sin \theta \cos \theta \right)$.
We know the identity value of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
So, ${{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right)$.
We now again take common of $\left( \sin \theta +\cos \theta \right)$.
$\begin{align}
& 4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)-4\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right) \\
& =4\left( \sin \theta +\cos \theta \right)\left( 1-1+\sin \theta \cos \theta \right) \\
& =4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right) \\
\end{align}$
The fraction form becomes \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\dfrac{4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right)}{\left( \sin \theta +\cos \theta \right)}=4\sin \theta \cos \theta \].
We know the identity formula of \[2\sin \theta \cos \theta =\sin 2\theta \].
So, \[4\sin \theta \cos \theta =2\left( 2\sin \theta \cos \theta \right)=2\sin 2\theta \].
Final solution is \[\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=2\sin 2\theta \].
And hence the correct answer is option A.
Note:
It is important to remember that the condition to eliminate the $\left( \sin \theta +\cos \theta \right)$ from both denominator and numerator is $\left( \sin \theta +\cos \theta \right)\ne 0$. No domain is given for the variable $x$. The value of $\tan x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -\dfrac{\pi }{4},n\in \mathbb{Z}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

