
Find $\dfrac{{dy}}{{dx}}$ of $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$.
Answer
522.3k+ views
Hint: In the given problem, we are required to differentiate the given function $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ with respect to x. Since, $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ . So, differentiation of $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation. Also derivatives of ${\sin ^{ - 1}}\left( x \right)$ and ${a^x}$ with respect to $x$ must be remembered in order to solve the given problem.
Complete step-by-step answer:
So, we have to find the derivative of $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ with respect to $x$ using the chain rule of differentiation.
Now, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)} \right]$
Now, Let us assume $u = \left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$. So substituting $\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$as $u$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( u \right)} \right]$
Now, we know that the derivative of ${\sin ^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{\sqrt {1 - {x^2}} }}$. So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\dfrac{d}{{dx}}\left[ {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right]$
Now, we have to differentiate $\left[ {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right]$ with respect to x using the quotient rule of differentiation. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\dfrac{{d\left( {{2^{x + 1}}} \right)}}{{dx}} - {2^{x + 1}}\dfrac{{d\left( {1 + {4^x}} \right)}}{{dx}}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Now, we know that the derivative of ${a^x}$ with respect to x is ${a^x}\log a$. So, simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {{2^{x + 1}}} \right)\left( {\log 2} \right) - \left( {{2^{x + 1}}} \right)\left( {{4^x}} \right)\left( {\log 4} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Taking \[\left( {{2^{x + 1}}} \right)\] common from the bracket, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {\log 2} \right) - \left( {{4^x}} \right)\left( {\log 4} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Also, we know that $\log 4 = \log {2^2} = 2\log 2$. Hence, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {\log 2} \right) - 2\left( {{4^x}} \right)\left( {\log 2} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Opening brackets and simplifying the calculations, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\log 2 + {4^x}\log 2 - 2\left( {{4^x}\log 2} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\log 2 - {4^x}\log 2}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Taking \[\left( {\log 2} \right)\] common from the bracket, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {\dfrac{{{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Evaluating the square root, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {\dfrac{{{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)\left( {1 + {4^x}} \right)}}{{\sqrt {{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Cancelling out the common factor in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} + 2\left( {{4^x}} \right) + 1} \right) - 4{{\left( {{2^x}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
Now, we know that \[{\left( {{2^x}} \right)^2} = {2^{2x}} = {4^x}\]. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} + 2\left( {{4^x}} \right) + 1} \right) - 4\left( {{4^x}} \right)} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} - 2\left( {{4^x}} \right) + 1} \right)} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
We know that ${\left( {1 - {4^x}} \right)^2} = {4^{2x}} - 2\left( {{4^x}} \right) + 1$. So, we get, \[\sqrt {\left( {{4^{2x}} - 2\left( {{4^x}} \right) + 1} \right)} = \left( {1 - {4^x}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\left( {1 - {4^x}} \right)}}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{2^{x + 1}}\log 2}}{{1 + {4^x}}}\]
So, the value of $\dfrac{{dy}}{{dx}}$ if $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ is \[\left( {\dfrac{{{2^{x + 1}}\log 2}}{{1 + {4^x}}}} \right)\]
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Complete step-by-step answer:
So, we have to find the derivative of $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ with respect to $x$ using the chain rule of differentiation.
Now, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)} \right]$
Now, Let us assume $u = \left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$. So substituting $\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$as $u$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( u \right)} \right]$
Now, we know that the derivative of ${\sin ^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{\sqrt {1 - {x^2}} }}$. So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\dfrac{d}{{dx}}\left[ {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right]$
Now, we have to differentiate $\left[ {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right]$ with respect to x using the quotient rule of differentiation. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\dfrac{{d\left( {{2^{x + 1}}} \right)}}{{dx}} - {2^{x + 1}}\dfrac{{d\left( {1 + {4^x}} \right)}}{{dx}}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Now, we know that the derivative of ${a^x}$ with respect to x is ${a^x}\log a$. So, simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {{2^{x + 1}}} \right)\left( {\log 2} \right) - \left( {{2^{x + 1}}} \right)\left( {{4^x}} \right)\left( {\log 4} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Taking \[\left( {{2^{x + 1}}} \right)\] common from the bracket, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {\log 2} \right) - \left( {{4^x}} \right)\left( {\log 4} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Also, we know that $\log 4 = \log {2^2} = 2\log 2$. Hence, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\left( {1 + {4^x}} \right)\left( {\log 2} \right) - 2\left( {{4^x}} \right)\left( {\log 2} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Opening brackets and simplifying the calculations, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\log 2 + {4^x}\log 2 - 2\left( {{4^x}\log 2} \right)}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{\log 2 - {4^x}\log 2}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Taking \[\left( {\log 2} \right)\] common from the bracket, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {1 - {{\left( {\;\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {\dfrac{{{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Evaluating the square root, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\log 2}}{{\sqrt {\dfrac{{{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)\left( {1 + {4^x}} \right)}}{{\sqrt {{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{{{\left( {1 + {4^x}} \right)}^2}}}} \right]\]
Cancelling out the common factor in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {{{\left( {1 + {4^x}} \right)}^2} - {{\left( {{2^{x + 1}}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} + 2\left( {{4^x}} \right) + 1} \right) - 4{{\left( {{2^x}} \right)}^2}} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
Now, we know that \[{\left( {{2^x}} \right)^2} = {2^{2x}} = {4^x}\]. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} + 2\left( {{4^x}} \right) + 1} \right) - 4\left( {{4^x}} \right)} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\sqrt {\left( {{4^{2x}} - 2\left( {{4^x}} \right) + 1} \right)} }}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
We know that ${\left( {1 - {4^x}} \right)^2} = {4^{2x}} - 2\left( {{4^x}} \right) + 1$. So, we get, \[\sqrt {\left( {{4^{2x}} - 2\left( {{4^x}} \right) + 1} \right)} = \left( {1 - {4^x}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{2^{x + 1}}} \right)\left( {\log 2} \right)}}{{\left( {1 - {4^x}} \right)}}\left[ {\dfrac{{1 - {4^x}}}{{1 + {4^x}}}} \right]\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{2^{x + 1}}\log 2}}{{1 + {4^x}}}\]
So, the value of $\dfrac{{dy}}{{dx}}$ if $y = {\sin ^{ - 1}}\left( {\dfrac{{{2^{x + 1}}}}{{1 + {4^x}}}} \right)$ is \[\left( {\dfrac{{{2^{x + 1}}\log 2}}{{1 + {4^x}}}} \right)\]
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

