
Find $\dfrac{dy}{dx}$ , if $y=12\left( 1-\cos t \right),x=10\left( t-\sin t \right),-\dfrac{\pi }{2} < t < \dfrac{\pi }{2}$ .
Answer
579k+ views
Hint: In order to solve this problem, we need to know the chain rule. The chain rule is given by $\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}$ . Also, in order to simplify the equation, we need to know some formulas. They are given by $\sin 2x=2\sin x.\cos x$, $1-\cos 2x=2{{\sin }^{2}}x$ and $\cot x=\dfrac{\cos x}{\sin x}$ .
Complete step by step answer:
As we can see that the $y$ is the function of $t$ . and $x$ is also the function of $t$ .
Hence, we cannot find the value $\dfrac{dy}{dx}$ directly by differentiating $y$ .
To solve this, we need to use the chain rule.
The chain rule says that
$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}...........(i)$
Therefore, we now need to find the values of $\dfrac{dy}{dt}$ and $\dfrac{dt}{dx}$ separately.
Differentiating $y=12\left( 1-\cos t \right)$ we get,
$\dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12\left( 1-\cos t \right) \right)$
Solving this further we get,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12-12\cos t \right) \\
& =\left( 0-12\left( -\sin t \right) \right) \\
& =12\sin t..........................(ii)
\end{align}\]
Similarly differentiating $x=10\left( t-\sin t \right)$ , we get,
$\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\
& \\
\end{align}$
Solving this further we get,
$\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\
& =\dfrac{d}{dt}\left( 10t-10\sin t \right) \\
& =10-10\cos t.....................(iii)
\end{align}$
We need to find the value of $\dfrac{dt}{dx}$ , taking the inverse of equation (iii) we get,
$\dfrac{dt}{dx}=\dfrac{1}{10-10\cos t}............(iv)$
Substituting the values of equation (ii) and (iv) in equation (i) we get,
$\dfrac{dy}{dx}=12\sin t\times \dfrac{1}{10-10\cos t}$
Solving this we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{12\sin t}{10\left( 1-\cos t \right)} \\
& =\dfrac{6\sin t}{5\left( 1-\cos t \right)}
\end{align}$
We can use the formulas $\sin 2x=2\sin x.\cos x$ and $1-\cos 2x=2{{\sin }^{2}}x$ .
Using the formula, we get,
$\dfrac{dy}{dx}=\dfrac{6\left( 2\sin \dfrac{t}{2}.\cos \dfrac{t}{2} \right)}{5\left( 2{{\sin }^{2}}\dfrac{t}{2} \right)}$
Solving this further we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{6\left( \cos \dfrac{t}{2} \right)}{5\left( \sin \dfrac{t}{2} \right)} \\
& =\dfrac{6}{5}\cot \dfrac{t}{2}
\end{align}$
Hence, the value of $\dfrac{dy}{dx}=\dfrac{6}{5}\cot \dfrac{t}{2}$.
Note: We can also solve this dividing equation (ii) by (iii). The answer will remain the same. We can also solve this by another approach. We can solve this by finding the value of $t$ in terms of $x$ and substituting in the equation of $y$ . Our aim will be to eliminate the value of $t$ . But we need to be careful as this method can turn out to be extremely complicated.
Complete step by step answer:
As we can see that the $y$ is the function of $t$ . and $x$ is also the function of $t$ .
Hence, we cannot find the value $\dfrac{dy}{dx}$ directly by differentiating $y$ .
To solve this, we need to use the chain rule.
The chain rule says that
$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}...........(i)$
Therefore, we now need to find the values of $\dfrac{dy}{dt}$ and $\dfrac{dt}{dx}$ separately.
Differentiating $y=12\left( 1-\cos t \right)$ we get,
$\dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12\left( 1-\cos t \right) \right)$
Solving this further we get,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12-12\cos t \right) \\
& =\left( 0-12\left( -\sin t \right) \right) \\
& =12\sin t..........................(ii)
\end{align}\]
Similarly differentiating $x=10\left( t-\sin t \right)$ , we get,
$\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\
& \\
\end{align}$
Solving this further we get,
$\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\
& =\dfrac{d}{dt}\left( 10t-10\sin t \right) \\
& =10-10\cos t.....................(iii)
\end{align}$
We need to find the value of $\dfrac{dt}{dx}$ , taking the inverse of equation (iii) we get,
$\dfrac{dt}{dx}=\dfrac{1}{10-10\cos t}............(iv)$
Substituting the values of equation (ii) and (iv) in equation (i) we get,
$\dfrac{dy}{dx}=12\sin t\times \dfrac{1}{10-10\cos t}$
Solving this we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{12\sin t}{10\left( 1-\cos t \right)} \\
& =\dfrac{6\sin t}{5\left( 1-\cos t \right)}
\end{align}$
We can use the formulas $\sin 2x=2\sin x.\cos x$ and $1-\cos 2x=2{{\sin }^{2}}x$ .
Using the formula, we get,
$\dfrac{dy}{dx}=\dfrac{6\left( 2\sin \dfrac{t}{2}.\cos \dfrac{t}{2} \right)}{5\left( 2{{\sin }^{2}}\dfrac{t}{2} \right)}$
Solving this further we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{6\left( \cos \dfrac{t}{2} \right)}{5\left( \sin \dfrac{t}{2} \right)} \\
& =\dfrac{6}{5}\cot \dfrac{t}{2}
\end{align}$
Hence, the value of $\dfrac{dy}{dx}=\dfrac{6}{5}\cot \dfrac{t}{2}$.
Note: We can also solve this dividing equation (ii) by (iii). The answer will remain the same. We can also solve this by another approach. We can solve this by finding the value of $t$ in terms of $x$ and substituting in the equation of $y$ . Our aim will be to eliminate the value of $t$ . But we need to be careful as this method can turn out to be extremely complicated.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

