
Find $\dfrac{{dy}}{{dx}}$ given ${y^3} + {x^3} = 3xy$?
Answer
547.2k+ views
Hint: In this question, we have to find the derivative of the given quantity. Differentiate it with respect to x and use the product rule of the derivative on the right side. After that move the value which contains $\dfrac{{dy}}{{dx}}$ on one side and remaining on the other side. After that divide, both sides by the coefficient of $\dfrac{{dy}}{{dx}}$ and do simplification to get the desired result.
Complete step by step answer:
The given equation is ${y^3} + {x^3} = 3xy$.
We have to find the value of $\dfrac{{dy}}{{dx}}$.
So, differentiate the above equation with respect to \[x\] what we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^3} + {x^3}} \right) = \dfrac{d}{{dx}}\left( {3xy} \right)$
Now apply the chain rule of differentiation on the right side, we have,
$\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}\left( b \right) + b\dfrac{d}{{dx}}\left( a \right)$
Apply the chain rule of differentiation on the right side, we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^3} + {x^3}} \right) = 3x\dfrac{d}{{dx}}\left( y \right) + 3y\dfrac{d}{{dx}}\left( x \right)$
Differentiate the terms,
$ \Rightarrow 3{y^2}\dfrac{{dy}}{{dx}} + 3{x^2} = 3x\dfrac{{dy}}{{dx}} + 3y$
Move $\dfrac{{dy}}{{dx}}$ terms on the left side and remaining on the right side,
$ \Rightarrow 3{y^2}\dfrac{{dy}}{{dx}} - 3x\dfrac{{dy}}{{dx}} = 3y - 3{x^2}$
Take 3 commons on both sides,
$ \Rightarrow 3\left( {{y^2} - x} \right)\dfrac{{dy}}{{dx}} = 3\left( {y - {x^2}} \right)$
Cancel out common factors,
$ \Rightarrow \left( {{y^2} - x} \right)\dfrac{{dy}}{{dx}} = \left( {y - {x^2}} \right)$
Divide both sides by $\left( {{y^2} - x} \right)$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {y - {x^2}} \right)}}{{\left( {{y^2} - x} \right)}}$
Hence, the value of $\dfrac{{dy}}{{dx}}$ for equation ${y^3} + {x^3} = 3xy$ is $\dfrac{{\left( {y - {x^2}} \right)}}{{\left( {{y^2} - x} \right)}}$.
Note: Differentiation can be defined as an independent variable value derivative that can be used to quantify features per unit change in an independent variable.
If the function f(x) undergoes an infinitesimal change of h in the vicinity of any point x, the function derivative is represented as
$\mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
Complete step by step answer:
The given equation is ${y^3} + {x^3} = 3xy$.
We have to find the value of $\dfrac{{dy}}{{dx}}$.
So, differentiate the above equation with respect to \[x\] what we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^3} + {x^3}} \right) = \dfrac{d}{{dx}}\left( {3xy} \right)$
Now apply the chain rule of differentiation on the right side, we have,
$\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}\left( b \right) + b\dfrac{d}{{dx}}\left( a \right)$
Apply the chain rule of differentiation on the right side, we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^3} + {x^3}} \right) = 3x\dfrac{d}{{dx}}\left( y \right) + 3y\dfrac{d}{{dx}}\left( x \right)$
Differentiate the terms,
$ \Rightarrow 3{y^2}\dfrac{{dy}}{{dx}} + 3{x^2} = 3x\dfrac{{dy}}{{dx}} + 3y$
Move $\dfrac{{dy}}{{dx}}$ terms on the left side and remaining on the right side,
$ \Rightarrow 3{y^2}\dfrac{{dy}}{{dx}} - 3x\dfrac{{dy}}{{dx}} = 3y - 3{x^2}$
Take 3 commons on both sides,
$ \Rightarrow 3\left( {{y^2} - x} \right)\dfrac{{dy}}{{dx}} = 3\left( {y - {x^2}} \right)$
Cancel out common factors,
$ \Rightarrow \left( {{y^2} - x} \right)\dfrac{{dy}}{{dx}} = \left( {y - {x^2}} \right)$
Divide both sides by $\left( {{y^2} - x} \right)$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {y - {x^2}} \right)}}{{\left( {{y^2} - x} \right)}}$
Hence, the value of $\dfrac{{dy}}{{dx}}$ for equation ${y^3} + {x^3} = 3xy$ is $\dfrac{{\left( {y - {x^2}} \right)}}{{\left( {{y^2} - x} \right)}}$.
Note: Differentiation can be defined as an independent variable value derivative that can be used to quantify features per unit change in an independent variable.
If the function f(x) undergoes an infinitesimal change of h in the vicinity of any point x, the function derivative is represented as
$\mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

