
Find $\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = $
A. $\dfrac{2}{{\left( {x + 1} \right)}} + \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} - \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
B. $\dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
C. $\dfrac{2}{{\left( {x + 1} \right)}} + \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
D. $\dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} - \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
Answer
589.2k+ views
Hint: Using the concept of partial fraction, we can write the given expression as$\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{C}{{{{\left( {x + 1} \right)}^3}}}$. Then we can take the sum of the RHS and solve for A B and C by equation the coefficients of each terms. Then we can substitute back the values of A B and C to get the required solution.
Complete step by step answer:
We can use the concept of partial fraction. So we can write the expression as
$\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{C}{{{{\left( {x + 1} \right)}^3}}}$ .. (1)
We can make the denominators of the RHS equal by taking LCM. We get,
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{{B\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{C}{{{{\left( {x + 1} \right)}^3}}}$
We can take the sum of the RHS. We get,
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{A\left( {{x^2} + 2x + 1} \right) + B\left( {x + 1} \right) + C}}{{{{\left( {x + 1} \right)}^3}}}$
As the denominators are equal, their numerators will be also equal,
$ \Rightarrow 2{x^2} + x + 1 = A\left( {{x^2} + 2x + 1} \right) + B\left( {x + 1} \right) + C$
On expanding we get,
$ \Rightarrow 2{x^2} + x + 1 = A{x^2} + 2Ax + A + Bx + B + C$
Taking like terms together we get,
$ \Rightarrow 2{x^2} + x + 1 = A{x^2} + \left( {2A + B} \right)x + \left( {A + B + C} \right)$
Now we can compare the coefficients of the polynomial.
On comparing coefficients of ${x^2}$, we get,
$A = 2$
On comparing coefficients of ${x^2}$, we get,
$ \Rightarrow 2A + B = 1$
On substituting the value of A, we get,
$ \Rightarrow 2 \times 2 + B = 1$
$ \Rightarrow B = 1 - 4 = - 3$
On comparing constants, we get,
$A + B + C = 1$
On substituting the value of A and B we get,
$ \Rightarrow 2 - 3 + C = 1$
$ \Rightarrow C = 1 + 1 = 2$
Now we can substitute the value of A, B and C in equation (1), we get,
$\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
So the required expression is $\dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
Therefore, the correct answer is option B.
Note: Alternate approach to this problem is:
We can take the value of the expression at $x = 0$.
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{2 \times {0^2} + 0 + 1}}{{{{\left( {0 + 1} \right)}^3}}}$
$ = 1$
Now we can check each of the options giving the values$x = 0$. At$x = 0$, the denominators of all the option will become 1. So we need to just add the numerators.
Thus option A becomes, $2 + 3 - 2 = 3$.
Option B becomes, $2 - 3 + 2 = 1$
Option C becomes, $2 + 3 + 2 = 5$
Option D becomes, $2 - 3 - 2 = - 3$
From the values of the options at $x = 0$only option B has the same value as that of the expression.
Therefore, the correct answer is option B.
Complete step by step answer:
We can use the concept of partial fraction. So we can write the expression as
$\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{C}{{{{\left( {x + 1} \right)}^3}}}$ .. (1)
We can make the denominators of the RHS equal by taking LCM. We get,
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{{B\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{C}{{{{\left( {x + 1} \right)}^3}}}$
We can take the sum of the RHS. We get,
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{A\left( {{x^2} + 2x + 1} \right) + B\left( {x + 1} \right) + C}}{{{{\left( {x + 1} \right)}^3}}}$
As the denominators are equal, their numerators will be also equal,
$ \Rightarrow 2{x^2} + x + 1 = A\left( {{x^2} + 2x + 1} \right) + B\left( {x + 1} \right) + C$
On expanding we get,
$ \Rightarrow 2{x^2} + x + 1 = A{x^2} + 2Ax + A + Bx + B + C$
Taking like terms together we get,
$ \Rightarrow 2{x^2} + x + 1 = A{x^2} + \left( {2A + B} \right)x + \left( {A + B + C} \right)$
Now we can compare the coefficients of the polynomial.
On comparing coefficients of ${x^2}$, we get,
$A = 2$
On comparing coefficients of ${x^2}$, we get,
$ \Rightarrow 2A + B = 1$
On substituting the value of A, we get,
$ \Rightarrow 2 \times 2 + B = 1$
$ \Rightarrow B = 1 - 4 = - 3$
On comparing constants, we get,
$A + B + C = 1$
On substituting the value of A and B we get,
$ \Rightarrow 2 - 3 + C = 1$
$ \Rightarrow C = 1 + 1 = 2$
Now we can substitute the value of A, B and C in equation (1), we get,
$\dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
So the required expression is $\dfrac{2}{{\left( {x + 1} \right)}} - \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{2}{{{{\left( {x + 1} \right)}^3}}}$
Therefore, the correct answer is option B.
Note: Alternate approach to this problem is:
We can take the value of the expression at $x = 0$.
$ \Rightarrow \dfrac{{2{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^3}}} = \dfrac{{2 \times {0^2} + 0 + 1}}{{{{\left( {0 + 1} \right)}^3}}}$
$ = 1$
Now we can check each of the options giving the values$x = 0$. At$x = 0$, the denominators of all the option will become 1. So we need to just add the numerators.
Thus option A becomes, $2 + 3 - 2 = 3$.
Option B becomes, $2 - 3 + 2 = 1$
Option C becomes, $2 + 3 + 2 = 5$
Option D becomes, $2 - 3 - 2 = - 3$
From the values of the options at $x = 0$only option B has the same value as that of the expression.
Therefore, the correct answer is option B.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

