
How do you find arc length of an arc that subtends a central angle of 60 degrees in a circle with radius 25m?
Answer
542.1k+ views
Hint: This type of problem is based on the concept of finding arc length of a circle. First, we have to convert 60 degrees to radian measure, that is, \[2\pi =360\] degree. Then, substitute the obtained values in the formula \[l=r\times \theta \], where l is the length of the arc and \[\theta \] is the angle subtended in radian measure. Here, r= 25 cm and \[\theta =\dfrac{\pi }{3}\]. Substitute these values in the formula. Make necessary calculations and find the value of l in cm.
Complete step by step answer:
According to the question, we are asked to find the length of the arc that subtends a central angle of 60 degrees in a circle with radius 25m.
We have been given the radius is 25 cm and angle is 60 degrees.
We first have to consider the angle 60 degrees.
First, we have to convert the degree into radian.
We know that \[2\pi =360\] degree.
Divide the whole equation by 6. We get,
\[\dfrac{2\pi }{6}=\dfrac{360}{6}\]degree
On further simplification, we get,
\[\Rightarrow \dfrac{2\pi }{6}=\dfrac{6\times 60}{6}\]
\[\Rightarrow \dfrac{\pi }{3}={{60}^{\circ }}\]
\[\therefore \theta =\dfrac{\pi }{3}\] ---------(1)
We know that, the formula to find the length of the arc when angle and radius are given, is
\[l=r\times \theta \], ------------(2)
where l is the length of the arc and \[\theta \] is the angle subtended.
Given in the question that r=25cm.
And from (1), we get \[\theta =\dfrac{\pi }{3}\].
Let us substitute these values in formula.
We get,
\[l=25\times \dfrac{\pi }{3}\]
\[\Rightarrow l=\dfrac{25\pi }{3}\]
We know that the value of \[\pi \] is \[\pi =3.14\].
Therefore,
\[\Rightarrow l=\dfrac{25\left( 3.14 \right)}{3}\]
On further simplification, we get,
\[\Rightarrow l=\dfrac{78.4}{3}\]
\[\therefore l=26.1666\]cm
Rounding up the final answer, we get,
\[l=26.16\]cm
Hence, the arc length of an arc that subtends a central angle of 60 degrees in a circle with radius 25m is 26.16cm.
Note: Whenever you get this type of problem, we should always try to make the necessary calculations in the given equation to get the final answer. We should avoid calculation mistakes based on sign conventions. We should not forget to convert degree into radiant. We should always consider the value of \[\pi \] as 3.14 approximately. The final solution can also be written as \[\dfrac{25\pi }{3}\].
Complete step by step answer:
According to the question, we are asked to find the length of the arc that subtends a central angle of 60 degrees in a circle with radius 25m.
We have been given the radius is 25 cm and angle is 60 degrees.
We first have to consider the angle 60 degrees.
First, we have to convert the degree into radian.
We know that \[2\pi =360\] degree.
Divide the whole equation by 6. We get,
\[\dfrac{2\pi }{6}=\dfrac{360}{6}\]degree
On further simplification, we get,
\[\Rightarrow \dfrac{2\pi }{6}=\dfrac{6\times 60}{6}\]
\[\Rightarrow \dfrac{\pi }{3}={{60}^{\circ }}\]
\[\therefore \theta =\dfrac{\pi }{3}\] ---------(1)
We know that, the formula to find the length of the arc when angle and radius are given, is
\[l=r\times \theta \], ------------(2)
where l is the length of the arc and \[\theta \] is the angle subtended.
Given in the question that r=25cm.
And from (1), we get \[\theta =\dfrac{\pi }{3}\].
Let us substitute these values in formula.
We get,
\[l=25\times \dfrac{\pi }{3}\]
\[\Rightarrow l=\dfrac{25\pi }{3}\]
We know that the value of \[\pi \] is \[\pi =3.14\].
Therefore,
\[\Rightarrow l=\dfrac{25\left( 3.14 \right)}{3}\]
On further simplification, we get,
\[\Rightarrow l=\dfrac{78.4}{3}\]
\[\therefore l=26.1666\]cm
Rounding up the final answer, we get,
\[l=26.16\]cm
Hence, the arc length of an arc that subtends a central angle of 60 degrees in a circle with radius 25m is 26.16cm.
Note: Whenever you get this type of problem, we should always try to make the necessary calculations in the given equation to get the final answer. We should avoid calculation mistakes based on sign conventions. We should not forget to convert degree into radiant. We should always consider the value of \[\pi \] as 3.14 approximately. The final solution can also be written as \[\dfrac{25\pi }{3}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

