
Find an expression for $\tan 7\theta $ in terms of $\tan \theta $ . By considering the equation $\tan 7\theta =0$ , show that $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ satisfies the cubic equation ${{x}^{3}}-21{{x}^{2}}+35x-7=0$ .
Answer
498.9k+ views
Hint: We have to split $7\theta $ as the sum of $3\theta $ and $4\theta $ . Then, we have to apply the properties of trigonometric functions, mainly, $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ , $\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }$ and $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ and simplify the expression. Then, we have to equate $\tan 7\theta $ to 0 and form a polynomial. Finally, in the given polynomial, substitute $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ and check whether the resultant polynomial is equal to the polynomial obtained in the previous step.
Complete step by step answer:
We have to express $\tan 7\theta $ in terms of $\tan \theta $ . We know that $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ . Let us write $7\theta $ as the sum of $3\theta $ and $4\theta $ .
$\Rightarrow \tan \left( 7\theta \right)=\tan \left( 3\theta +4\theta \right)=\dfrac{\tan 3\theta +\tan 4\theta }{1-\tan 3\theta \tan 4\theta }$
We know that $\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }$ .
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }+\tan 4\theta }{1-\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\tan 4\theta }$
We can write $\tan 4\theta $ as $\tan 2\left( 2\theta \right)$ . We know that $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ . Therefore, the above equation becomes
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }+\dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta }}{1-\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta }}$
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta }{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}$
Now, let us cancel common terms.
$\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta }{\require{cancel}\cancel{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}} \\
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta } \\
\end{align}$
Again we have to apply the property $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ in the above equation.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}^{2}} \right)+2\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)\left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}^{2}} \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}$
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( \dfrac{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta }{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}} \right)+\dfrac{4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)}{1-{{\tan }^{2}}\theta }}{\left( 1-3{{\tan }^{2}}\theta \right)\left( \dfrac{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta }{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}} \right)-\dfrac{4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)}{1-{{\tan }^{2}}\theta }}$
Let us simplify the terms.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}$
We have to cancel the common terms.
$\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}} \\
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)} \\
\end{align}$
Let us apply distributive property.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}+4{{\tan }^{5}}\theta +\left( 4\tan \theta -12{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right){{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \left( 1-3{{\tan }^{2}}\theta \right)+\left( -12{{\tan }^{2}}\theta +4{{\tan }^{4}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta \left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)-12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta \left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)+4{{\tan }^{5}}\theta +\left( 4\tan \theta -12{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)-4{{\tan }^{2}}\theta \left( 1-3{{\tan }^{2}}\theta \right)+\left( -12{{\tan }^{2}}\theta +4{{\tan }^{4}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}$
We have to apply distributive property.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta -6{{\tan }^{3}}\theta +3{{\tan }^{5}}\theta -12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta +2{{\tan }^{5}}\theta -{{\tan }^{7}}\theta +4{{\tan }^{5}}\theta +4\tan \theta -4{{\tan }^{3}}\theta -12{{\tan }^{3}}\theta +12{{\tan }^{5}}\theta }{1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta -3{{\tan }^{2}}\theta +6{{\tan }^{4}}\theta -3{{\tan }^{6}}\theta -4{{\tan }^{2}}\theta +12{{\tan }^{4}}\theta -12{{\tan }^{2}}\theta +12{{\tan }^{4}}\theta +4{{\tan }^{6}}\theta }$We have to add the like terms.
\[\Rightarrow \tan \left( 7\theta \right)=\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }\]
Hence, the value of \[\tan \left( 7\theta \right)\] in terms of $\tan \theta $ is \[\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }\] .
Now, we have to equate $\tan \left( 7\theta \right)$ to 0.
\[\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }=0 \\
& \Rightarrow 7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta =0 \\
\end{align}\]
We have to take the common $\tan \theta $ common outside.
\[\begin{align}
& \Rightarrow \tan \theta \left( 7-35{{\tan }^{2}}\theta +21{{\tan }^{4}}\theta -{{\tan }^{6}}\theta \right)=0 \\
& \Rightarrow 7-35{{\tan }^{2}}\theta +21{{\tan }^{4}}\theta -{{\tan }^{6}}\theta =0 \\
\end{align}\]
Let us take a negative sign outside.
\[\begin{align}
& \Rightarrow -\left( -7+35{{\tan }^{2}}\theta -21{{\tan }^{4}}\theta +{{\tan }^{6}}\theta \right)=0 \\
& \Rightarrow -7+35{{\tan }^{2}}\theta -21{{\tan }^{4}}\theta +{{\tan }^{6}}\theta =0 \\
& \Rightarrow {{\tan }^{6}}\theta -21{{\tan }^{4}}\theta +35{{\tan }^{2}}\theta -7=0...\left( i \right) \\
\end{align}\]
Let us consider $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ . We have to substitute this value in the given polynomial \[{{x}^{3}}-21{{x}^{2}}+35x-7=0\] .
\[\begin{align}
& \Rightarrow {{\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)}^{3}}-21{{\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)}^{2}}+35\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)-7=0 \\
& \Rightarrow {{\tan }^{6}}\left( \dfrac{3\pi }{7} \right)-21{{\tan }^{4}}\left( \dfrac{3\pi }{7} \right)+35{{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)-7=0 \\
\end{align}\]
We can see that the above equation will be equal to (i), when $\theta =\dfrac{3\pi }{7}$ .
Therefore, $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ satisfies the cubic equation ${{x}^{3}}-21{{x}^{2}}+35x-7=0$ .
Note: Students must be thorough with the formulas and properties of trigonometric functions and algebraic identities. All the calculations must be done carefully as there is a high chance of making mistakes when applying distributive property and adding like terms.
Complete step by step answer:
We have to express $\tan 7\theta $ in terms of $\tan \theta $ . We know that $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ . Let us write $7\theta $ as the sum of $3\theta $ and $4\theta $ .
$\Rightarrow \tan \left( 7\theta \right)=\tan \left( 3\theta +4\theta \right)=\dfrac{\tan 3\theta +\tan 4\theta }{1-\tan 3\theta \tan 4\theta }$
We know that $\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }$ .
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }+\tan 4\theta }{1-\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\tan 4\theta }$
We can write $\tan 4\theta $ as $\tan 2\left( 2\theta \right)$ . We know that $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ . Therefore, the above equation becomes
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }+\dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta }}{1-\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right)\dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta }}$
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta }{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}$
Now, let us cancel common terms.
$\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta }{\require{cancel}\cancel{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)}}} \\
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)+2\tan 2\theta \left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}2\theta \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\tan 2\theta } \\
\end{align}$
Again we have to apply the property $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ in the above equation.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}^{2}} \right)+2\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)\left( 1-3{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}^{2}} \right)-\left( 3\tan \theta -{{\tan }^{3}}\theta \right)2\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)}$
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( \dfrac{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta }{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}} \right)+\dfrac{4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)}{1-{{\tan }^{2}}\theta }}{\left( 1-3{{\tan }^{2}}\theta \right)\left( \dfrac{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta }{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}} \right)-\dfrac{4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)}{1-{{\tan }^{2}}\theta }}$
Let us simplify the terms.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}$
We have to cancel the common terms.
$\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}}{\dfrac{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\require{cancel}\cancel{{{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}}}} \\
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]+4\tan \theta \left( 1-3{{\tan }^{2}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left[ {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \right]-4\tan \theta \left( 3\tan \theta -{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)} \\
\end{align}$
Let us apply distributive property.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta {{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}+4{{\tan }^{5}}\theta +\left( 4\tan \theta -12{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right){{\left( 1-{{\tan }^{2}}\theta \right)}^{2}}-4{{\tan }^{2}}\theta \left( 1-3{{\tan }^{2}}\theta \right)+\left( -12{{\tan }^{2}}\theta +4{{\tan }^{4}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta \left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)-12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta \left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)+4{{\tan }^{5}}\theta +\left( 4\tan \theta -12{{\tan }^{3}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)\left( 1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta \right)-4{{\tan }^{2}}\theta \left( 1-3{{\tan }^{2}}\theta \right)+\left( -12{{\tan }^{2}}\theta +4{{\tan }^{4}}\theta \right)\left( 1-{{\tan }^{2}}\theta \right)}$
We have to apply distributive property.
$\Rightarrow \tan \left( 7\theta \right)=\dfrac{3\tan \theta -6{{\tan }^{3}}\theta +3{{\tan }^{5}}\theta -12{{\tan }^{3}}\theta -{{\tan }^{3}}\theta +2{{\tan }^{5}}\theta -{{\tan }^{7}}\theta +4{{\tan }^{5}}\theta +4\tan \theta -4{{\tan }^{3}}\theta -12{{\tan }^{3}}\theta +12{{\tan }^{5}}\theta }{1-2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta -3{{\tan }^{2}}\theta +6{{\tan }^{4}}\theta -3{{\tan }^{6}}\theta -4{{\tan }^{2}}\theta +12{{\tan }^{4}}\theta -12{{\tan }^{2}}\theta +12{{\tan }^{4}}\theta +4{{\tan }^{6}}\theta }$We have to add the like terms.
\[\Rightarrow \tan \left( 7\theta \right)=\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }\]
Hence, the value of \[\tan \left( 7\theta \right)\] in terms of $\tan \theta $ is \[\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }\] .
Now, we have to equate $\tan \left( 7\theta \right)$ to 0.
\[\begin{align}
& \Rightarrow \tan \left( 7\theta \right)=\dfrac{7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta }{1-21{{\tan }^{2}}\theta +31{{\tan }^{4}}\theta +{{\tan }^{6}}\theta }=0 \\
& \Rightarrow 7\tan \theta -35{{\tan }^{3}}\theta +21{{\tan }^{5}}\theta -{{\tan }^{7}}\theta =0 \\
\end{align}\]
We have to take the common $\tan \theta $ common outside.
\[\begin{align}
& \Rightarrow \tan \theta \left( 7-35{{\tan }^{2}}\theta +21{{\tan }^{4}}\theta -{{\tan }^{6}}\theta \right)=0 \\
& \Rightarrow 7-35{{\tan }^{2}}\theta +21{{\tan }^{4}}\theta -{{\tan }^{6}}\theta =0 \\
\end{align}\]
Let us take a negative sign outside.
\[\begin{align}
& \Rightarrow -\left( -7+35{{\tan }^{2}}\theta -21{{\tan }^{4}}\theta +{{\tan }^{6}}\theta \right)=0 \\
& \Rightarrow -7+35{{\tan }^{2}}\theta -21{{\tan }^{4}}\theta +{{\tan }^{6}}\theta =0 \\
& \Rightarrow {{\tan }^{6}}\theta -21{{\tan }^{4}}\theta +35{{\tan }^{2}}\theta -7=0...\left( i \right) \\
\end{align}\]
Let us consider $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ . We have to substitute this value in the given polynomial \[{{x}^{3}}-21{{x}^{2}}+35x-7=0\] .
\[\begin{align}
& \Rightarrow {{\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)}^{3}}-21{{\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)}^{2}}+35\left( {{\tan }^{2}}\left( \dfrac{3\pi }{7} \right) \right)-7=0 \\
& \Rightarrow {{\tan }^{6}}\left( \dfrac{3\pi }{7} \right)-21{{\tan }^{4}}\left( \dfrac{3\pi }{7} \right)+35{{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)-7=0 \\
\end{align}\]
We can see that the above equation will be equal to (i), when $\theta =\dfrac{3\pi }{7}$ .
Therefore, $x={{\tan }^{2}}\left( \dfrac{3\pi }{7} \right)$ satisfies the cubic equation ${{x}^{3}}-21{{x}^{2}}+35x-7=0$ .
Note: Students must be thorough with the formulas and properties of trigonometric functions and algebraic identities. All the calculations must be done carefully as there is a high chance of making mistakes when applying distributive property and adding like terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

