
Find all the zeroes of $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$?
Answer
483.9k+ views
Hint: We start solving the problem by recalling the fact that if ‘a’ is zero of the polynomial $f\left( x \right)$, then $x-a$ is the factor of $f\left( x \right)$. We then find the factors using the given zeros and then multiply them. We then perform long division by taking the obtained result of multiplication as a divisor and the given polynomial is divided to get the quotient. We then factorize the quotient and then equate the factors to zero to get all the zeroes of the given polynomial.
Complete step-by-step answer:
According to the problem, we are asked to find the zeros of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ if two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
We know that if ‘a’ is zero of the polynomial $f\left( x \right)$, then $x-a$ is the factor of $f\left( x \right)$.
So, we get $x-\sqrt{2}$ and $x+\sqrt{2}$ are the factors of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$.
Let us find the multiplication of both the factors $x-\sqrt{2}$ and $x+\sqrt{2}$.
So, the product is $\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)={{x}^{2}}-2$.
Let us divide $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ with ${{x}^{2}}-2$ by using long division process as shown below:
From the division algorithm, we know that dividend = $\left( \text{Divisor}\times \text{Quotient} \right)+\text{Remainder}$.
Here we have $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ as dividend, ${{x}^{2}}-2$ as divisor, $2{{x}^{2}}-3x+1$ as quotient and 0 as the remainder.
So, we get $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2=\left( {{x}^{2}}-2 \right)\times \left( 2{{x}^{2}}-3x+1 \right)$.
Now, let us factorize $2{{x}^{2}}-3x+1$ to get the remaining zeros of $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$.
So, we get $2{{x}^{2}}-3x+1=2{{x}^{2}}-2x-x+1$.
$\Rightarrow 2{{x}^{2}}-3x+1=2x\left( x-1 \right)-1\left( x-1 \right)$.
$\Rightarrow 2{{x}^{2}}-3x+1=\left( 2x-1 \right)\left( x-1 \right)$.
So, we have found $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2=\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)\times \left( x-1 \right)\times \left( 2x-1 \right)$.
We know that zeroes are found when the given polynomial is equated to zero.
So, we get $\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)\times \left( x-1 \right)\times \left( 2x-1 \right)=0$.
\[\Rightarrow x-\sqrt{2}=0\], $x+\sqrt{2}=0$, $x-1=0$, $2x-1=0$.
\[\Rightarrow x=\sqrt{2}\], $x=-\sqrt{2}$, $x=1$, $2x=1$.
\[\Rightarrow x=\sqrt{2}\], $x=-\sqrt{2}$, $x=1$, $x=\dfrac{1}{2}$.
∴ We have found the zeroes of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ as $\sqrt{2}$, $-\sqrt{2}$, 1, $\dfrac{1}{2}$.
Note: We can solve the problem by performing trial and error method for the given polynomial. We can also solve this problem as shown below:
We are given the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ and two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$. Let us assume the remaining two zeroes are ‘p’ and ‘q’.
We know that the sum of the zeroes of the polynomial $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ is $\dfrac{-b}{a}$ and product of the zeroes of the polynomial $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ is $\dfrac{e}{a}$.
So, we get $\sqrt{2}-\sqrt{2}+p+q=\dfrac{-\left( -3 \right)}{2}$,
$\Rightarrow p+q=\dfrac{3}{2}$.
$\Rightarrow q=\dfrac{3}{2}-p$ ---(1).
Now, we have $\left( \sqrt{2} \right)\times \left( -\sqrt{2} \right)\times p\times q=\dfrac{-2}{2}$.
$\Rightarrow -2pq=-1$.
$\Rightarrow pq=\dfrac{1}{2}$ ---(2).
Let us substitute equation (1) in equation (2).
$\Rightarrow p\left( \dfrac{3}{2}-p \right)=\dfrac{1}{2}$.
$\Rightarrow \dfrac{3}{2}p-{{p}^{2}}=\dfrac{1}{2}$.
$\Rightarrow {{p}^{2}}-\dfrac{3}{2}p+\dfrac{1}{2}=0$.
$\Rightarrow {{p}^{2}}-\dfrac{1}{2}p-p+\dfrac{1}{2}=0$.
$\Rightarrow p\left( p-\dfrac{1}{2} \right)-1\left( p-\dfrac{1}{2} \right)=0$.
$\Rightarrow \left( p-1 \right)\left( p-\dfrac{1}{2} \right)=0$.
$\Rightarrow p-1=0$ or $p-\dfrac{1}{2}=0$.
$\Rightarrow p=1$ or $p=\dfrac{1}{2}$.
Let us substitute these values in equation (2) to get the values of ‘q’.
If $p=1$, then $1\times q=\dfrac{1}{2}\Leftrightarrow q=\dfrac{1}{2}$.
If $p=\dfrac{1}{2}$, then $\dfrac{1}{2}\times q=\dfrac{1}{2}\Leftrightarrow q=1$.
Complete step-by-step answer:
According to the problem, we are asked to find the zeros of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ if two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
We know that if ‘a’ is zero of the polynomial $f\left( x \right)$, then $x-a$ is the factor of $f\left( x \right)$.
So, we get $x-\sqrt{2}$ and $x+\sqrt{2}$ are the factors of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$.
Let us find the multiplication of both the factors $x-\sqrt{2}$ and $x+\sqrt{2}$.
So, the product is $\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)={{x}^{2}}-2$.
Let us divide $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ with ${{x}^{2}}-2$ by using long division process as shown below:

From the division algorithm, we know that dividend = $\left( \text{Divisor}\times \text{Quotient} \right)+\text{Remainder}$.
Here we have $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ as dividend, ${{x}^{2}}-2$ as divisor, $2{{x}^{2}}-3x+1$ as quotient and 0 as the remainder.
So, we get $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2=\left( {{x}^{2}}-2 \right)\times \left( 2{{x}^{2}}-3x+1 \right)$.
Now, let us factorize $2{{x}^{2}}-3x+1$ to get the remaining zeros of $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$.
So, we get $2{{x}^{2}}-3x+1=2{{x}^{2}}-2x-x+1$.
$\Rightarrow 2{{x}^{2}}-3x+1=2x\left( x-1 \right)-1\left( x-1 \right)$.
$\Rightarrow 2{{x}^{2}}-3x+1=\left( 2x-1 \right)\left( x-1 \right)$.
So, we have found $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2=\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)\times \left( x-1 \right)\times \left( 2x-1 \right)$.
We know that zeroes are found when the given polynomial is equated to zero.
So, we get $\left( x-\sqrt{2} \right)\times \left( x+\sqrt{2} \right)\times \left( x-1 \right)\times \left( 2x-1 \right)=0$.
\[\Rightarrow x-\sqrt{2}=0\], $x+\sqrt{2}=0$, $x-1=0$, $2x-1=0$.
\[\Rightarrow x=\sqrt{2}\], $x=-\sqrt{2}$, $x=1$, $2x=1$.
\[\Rightarrow x=\sqrt{2}\], $x=-\sqrt{2}$, $x=1$, $x=\dfrac{1}{2}$.
∴ We have found the zeroes of the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ as $\sqrt{2}$, $-\sqrt{2}$, 1, $\dfrac{1}{2}$.
Note: We can solve the problem by performing trial and error method for the given polynomial. We can also solve this problem as shown below:
We are given the polynomial $2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2$ and two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$. Let us assume the remaining two zeroes are ‘p’ and ‘q’.
We know that the sum of the zeroes of the polynomial $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ is $\dfrac{-b}{a}$ and product of the zeroes of the polynomial $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ is $\dfrac{e}{a}$.
So, we get $\sqrt{2}-\sqrt{2}+p+q=\dfrac{-\left( -3 \right)}{2}$,
$\Rightarrow p+q=\dfrac{3}{2}$.
$\Rightarrow q=\dfrac{3}{2}-p$ ---(1).
Now, we have $\left( \sqrt{2} \right)\times \left( -\sqrt{2} \right)\times p\times q=\dfrac{-2}{2}$.
$\Rightarrow -2pq=-1$.
$\Rightarrow pq=\dfrac{1}{2}$ ---(2).
Let us substitute equation (1) in equation (2).
$\Rightarrow p\left( \dfrac{3}{2}-p \right)=\dfrac{1}{2}$.
$\Rightarrow \dfrac{3}{2}p-{{p}^{2}}=\dfrac{1}{2}$.
$\Rightarrow {{p}^{2}}-\dfrac{3}{2}p+\dfrac{1}{2}=0$.
$\Rightarrow {{p}^{2}}-\dfrac{1}{2}p-p+\dfrac{1}{2}=0$.
$\Rightarrow p\left( p-\dfrac{1}{2} \right)-1\left( p-\dfrac{1}{2} \right)=0$.
$\Rightarrow \left( p-1 \right)\left( p-\dfrac{1}{2} \right)=0$.
$\Rightarrow p-1=0$ or $p-\dfrac{1}{2}=0$.
$\Rightarrow p=1$ or $p=\dfrac{1}{2}$.
Let us substitute these values in equation (2) to get the values of ‘q’.
If $p=1$, then $1\times q=\dfrac{1}{2}\Leftrightarrow q=\dfrac{1}{2}$.
If $p=\dfrac{1}{2}$, then $\dfrac{1}{2}\times q=\dfrac{1}{2}\Leftrightarrow q=1$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
