
Find all the values of θ satisfying the equation \[\sin \theta + \sin 5\theta = \sin 3\theta \] such that $0 \leqslant \theta \leqslant \pi $.
Answer
599.7k+ views
Hint- In this question, we use the concept of trigonometric equations. The equations that involve the trigonometric functions of a variable are called trigonometric equations and in which we have to find the value of $\theta $ or solution of equation by using the general solution of $\sin x$ and $\cos x$ . General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
Complete step by step answer:
Given, a trigonometric equation \[\sin \theta + \sin 5\theta = \sin 3\theta \]
Now, we apply trigonometric identities $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[
\Rightarrow 2\sin \left( {\dfrac{{\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 5\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {\dfrac{{6\theta }}{2}} \right)\cos \left( {\dfrac{{ - 4\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( { - 2\theta } \right) = \sin 3\theta \\
\]
As we know, $\cos \left( { - x} \right) = \cos x$
\[
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) - \sin 3\theta = 0 \\
\Rightarrow \left( {2\cos 2\theta - 1} \right)\sin 3\theta = 0 \\
\]
Now, Either \[\sin 3\theta = 0\] or \[2\cos 2\theta - 1 = 0\]
To solving above trigonometric equations, now we use General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
\[
\Rightarrow \sin 3\theta = \sin 0 \\
\Rightarrow 3\theta = n\pi + {\left( { - 1} \right)^n} \times 0 \\
\Rightarrow 3\theta = n\pi \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is $\theta = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi $
\[
\Rightarrow 2\cos 2\theta - 1 = 0 \\
\Rightarrow \cos 2\theta = \dfrac{1}{2} \\
\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3} \\
\]
Now, we use \[\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha \]
\[
\Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow \theta = n\pi \pm \dfrac{\pi }{6},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is \[\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
So, the solutions are $\theta = 0,\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{5\pi }}{6},\pi $
Note- Signs assume great importance in case of trigonometric functions. Students generally commit mistakes if they don’t remember the general solutions for all which reflects the wrong solutions in the end.
Complete step by step answer:
Given, a trigonometric equation \[\sin \theta + \sin 5\theta = \sin 3\theta \]
Now, we apply trigonometric identities $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[
\Rightarrow 2\sin \left( {\dfrac{{\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 5\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {\dfrac{{6\theta }}{2}} \right)\cos \left( {\dfrac{{ - 4\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( { - 2\theta } \right) = \sin 3\theta \\
\]
As we know, $\cos \left( { - x} \right) = \cos x$
\[
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) - \sin 3\theta = 0 \\
\Rightarrow \left( {2\cos 2\theta - 1} \right)\sin 3\theta = 0 \\
\]
Now, Either \[\sin 3\theta = 0\] or \[2\cos 2\theta - 1 = 0\]
To solving above trigonometric equations, now we use General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
\[
\Rightarrow \sin 3\theta = \sin 0 \\
\Rightarrow 3\theta = n\pi + {\left( { - 1} \right)^n} \times 0 \\
\Rightarrow 3\theta = n\pi \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is $\theta = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi $
\[
\Rightarrow 2\cos 2\theta - 1 = 0 \\
\Rightarrow \cos 2\theta = \dfrac{1}{2} \\
\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3} \\
\]
Now, we use \[\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha \]
\[
\Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow \theta = n\pi \pm \dfrac{\pi }{6},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is \[\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
So, the solutions are $\theta = 0,\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{5\pi }}{6},\pi $
Note- Signs assume great importance in case of trigonometric functions. Students generally commit mistakes if they don’t remember the general solutions for all which reflects the wrong solutions in the end.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

