
Find all the values of θ satisfying the equation \[\sin \theta + \sin 5\theta = \sin 3\theta \] such that $0 \leqslant \theta \leqslant \pi $.
Answer
614.1k+ views
Hint- In this question, we use the concept of trigonometric equations. The equations that involve the trigonometric functions of a variable are called trigonometric equations and in which we have to find the value of $\theta $ or solution of equation by using the general solution of $\sin x$ and $\cos x$ . General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
Complete step by step answer:
Given, a trigonometric equation \[\sin \theta + \sin 5\theta = \sin 3\theta \]
Now, we apply trigonometric identities $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[
\Rightarrow 2\sin \left( {\dfrac{{\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 5\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {\dfrac{{6\theta }}{2}} \right)\cos \left( {\dfrac{{ - 4\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( { - 2\theta } \right) = \sin 3\theta \\
\]
As we know, $\cos \left( { - x} \right) = \cos x$
\[
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) - \sin 3\theta = 0 \\
\Rightarrow \left( {2\cos 2\theta - 1} \right)\sin 3\theta = 0 \\
\]
Now, Either \[\sin 3\theta = 0\] or \[2\cos 2\theta - 1 = 0\]
To solving above trigonometric equations, now we use General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
\[
\Rightarrow \sin 3\theta = \sin 0 \\
\Rightarrow 3\theta = n\pi + {\left( { - 1} \right)^n} \times 0 \\
\Rightarrow 3\theta = n\pi \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is $\theta = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi $
\[
\Rightarrow 2\cos 2\theta - 1 = 0 \\
\Rightarrow \cos 2\theta = \dfrac{1}{2} \\
\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3} \\
\]
Now, we use \[\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha \]
\[
\Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow \theta = n\pi \pm \dfrac{\pi }{6},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is \[\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
So, the solutions are $\theta = 0,\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{5\pi }}{6},\pi $
Note- Signs assume great importance in case of trigonometric functions. Students generally commit mistakes if they don’t remember the general solutions for all which reflects the wrong solutions in the end.
Complete step by step answer:
Given, a trigonometric equation \[\sin \theta + \sin 5\theta = \sin 3\theta \]
Now, we apply trigonometric identities $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[
\Rightarrow 2\sin \left( {\dfrac{{\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 5\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {\dfrac{{6\theta }}{2}} \right)\cos \left( {\dfrac{{ - 4\theta }}{2}} \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( { - 2\theta } \right) = \sin 3\theta \\
\]
As we know, $\cos \left( { - x} \right) = \cos x$
\[
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) = \sin 3\theta \\
\Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) - \sin 3\theta = 0 \\
\Rightarrow \left( {2\cos 2\theta - 1} \right)\sin 3\theta = 0 \\
\]
Now, Either \[\sin 3\theta = 0\] or \[2\cos 2\theta - 1 = 0\]
To solving above trigonometric equations, now we use General solution of equation $\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha $ where $n \in I$ and $\alpha $ is principal angle.
\[
\Rightarrow \sin 3\theta = \sin 0 \\
\Rightarrow 3\theta = n\pi + {\left( { - 1} \right)^n} \times 0 \\
\Rightarrow 3\theta = n\pi \\
\Rightarrow \theta = \dfrac{{n\pi }}{3},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is $\theta = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi $
\[
\Rightarrow 2\cos 2\theta - 1 = 0 \\
\Rightarrow \cos 2\theta = \dfrac{1}{2} \\
\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3} \\
\]
Now, we use \[\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha \]
\[
\Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow \theta = n\pi \pm \dfrac{\pi }{6},n \in I\left( {{\text{Integer}}} \right) \\
\]
Now, the values of $\theta $ in interval $0 \leqslant \theta \leqslant \pi $ for different integer n is \[\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
So, the solutions are $\theta = 0,\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{5\pi }}{6},\pi $
Note- Signs assume great importance in case of trigonometric functions. Students generally commit mistakes if they don’t remember the general solutions for all which reflects the wrong solutions in the end.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

