
How do you find all the real and complex roots of ${x^6} - 64 = 0$ ?
Answer
528k+ views
Hint: In the given question, we are required to find all the roots of the equation ${x^6} - 64 = 0$. The roots of the given equation may be real or may be complex. Such questions can also be solved using Demoivre's theorem as it also involves calculating the rational power of a complex number with ease.
Complete step by step answer:
So, we have, ${x^6} - 64 = 0$.
We need to find all the real and complex roots of the given equation. Hence, we have to simplify the equation so as to find the value of x.
${x^6} - 64 = 0$
Shifting $64$ from left side of the equation to right side of the equation, we get,
$ \Rightarrow {x^6} = 64$
We know that $64$can also be written as $64\left( {\cos \left( {2k\pi + 0} \right) + i\sin \left( {2k\pi + 0} \right)} \right)$ in polar form as a complex number because $\cos 0 = 1$and$\sin 0 = 0$. So, writing $64$ as $64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)$, we get the equation as:
\[ \Rightarrow {x^6} = 64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)\]
$ \Rightarrow x = {\left[ {64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)} \right]^{\dfrac{1}{6}}}$
We know that $64 = {2^6}$. So, we get,
$ \Rightarrow x = {\left[ {{2^6}\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)} \right]^{\dfrac{1}{6}}}$
Simplifying further, we get,
$ \Rightarrow x = 2{\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)^{\dfrac{1}{6}}}$
Now, according to Demoivre’s Theorem, we know that \[{\left( {\cos \left( x \right) + i\sin \left( x \right)} \right)^{\dfrac{1}{n}}} = \left( {\cos \left( {\dfrac{x}{n}} \right) + i\sin \left( {\dfrac{x}{n}} \right)} \right)\] for $k = 0,1,2,3,4,5$
So, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2k\pi }}{6}} \right) + i\sin \left( {\dfrac{{2k\pi }}{6}} \right)} \right)$ for $k = 0,1,2,3,4,5$
For $k = 0$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 0 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 0 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( 0 \right) + i\sin \left( 0 \right)} \right)$
$ \Rightarrow x = 2\left( 1 \right) = 2$
For $k = 1$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 1 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 1 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{3}} \right)} \right)$
$ \Rightarrow x = 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = 1 + \sqrt 3 i$
For $k = 2$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 2 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 2 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\pi }}{3}} \right) + i\sin \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
$ \Rightarrow x = 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = - 1 + \sqrt 3 i$
For $k = 3$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 3 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 3 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \pi + i\sin \pi } \right)$
$ \Rightarrow x = 2\left( { - 1 + i\left( 0 \right)} \right)$
$ \Rightarrow x = - 2$
For $k = 4$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 4 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 4 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \dfrac{{4\pi }}{3} + i\sin \dfrac{{4\pi }}{3}} \right)$
$ \Rightarrow x = 2\left( { - \dfrac{1}{2} + i\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = - 1 - i\sqrt 3 $
For $k = 5$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 5 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 5 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \dfrac{{5\pi }}{3} + i\sin \dfrac{{5\pi }}{3}} \right)$
$ \Rightarrow x = 2\left( {\dfrac{1}{2} + i\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = 1 - i\sqrt 3 $
So, all the real roots of the equation ${x^6} - 64 = 0$ are: $2$ and $ - 2$
Also, all the complex roots of the equation ${x^6} - 64 = 0$ are: $1 - i\sqrt 3 $,$ - 1 - i\sqrt 3 $,$1 + i\sqrt 3 $ and $ - 1 + i\sqrt 3 $.
So, all the roots of the equation ${x^6} - 64 = 0$are: $2$, $ - 2$, $1 - i\sqrt 3 $,$ - 1 - i\sqrt 3 $,$1 + i\sqrt 3 $ and $ - 1 + i\sqrt 3 $.
Note: The application of demoivre’s theorem makes the question a lot easier than the conventional method of finding the power of the complex number. Trigonometry is of much use when dealing with polar forms of complex numbers.
Complete step by step answer:
So, we have, ${x^6} - 64 = 0$.
We need to find all the real and complex roots of the given equation. Hence, we have to simplify the equation so as to find the value of x.
${x^6} - 64 = 0$
Shifting $64$ from left side of the equation to right side of the equation, we get,
$ \Rightarrow {x^6} = 64$
We know that $64$can also be written as $64\left( {\cos \left( {2k\pi + 0} \right) + i\sin \left( {2k\pi + 0} \right)} \right)$ in polar form as a complex number because $\cos 0 = 1$and$\sin 0 = 0$. So, writing $64$ as $64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)$, we get the equation as:
\[ \Rightarrow {x^6} = 64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)\]
$ \Rightarrow x = {\left[ {64\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)} \right]^{\dfrac{1}{6}}}$
We know that $64 = {2^6}$. So, we get,
$ \Rightarrow x = {\left[ {{2^6}\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)} \right]^{\dfrac{1}{6}}}$
Simplifying further, we get,
$ \Rightarrow x = 2{\left( {\cos \left( {2k\pi } \right) + i\sin \left( {2k\pi } \right)} \right)^{\dfrac{1}{6}}}$
Now, according to Demoivre’s Theorem, we know that \[{\left( {\cos \left( x \right) + i\sin \left( x \right)} \right)^{\dfrac{1}{n}}} = \left( {\cos \left( {\dfrac{x}{n}} \right) + i\sin \left( {\dfrac{x}{n}} \right)} \right)\] for $k = 0,1,2,3,4,5$
So, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2k\pi }}{6}} \right) + i\sin \left( {\dfrac{{2k\pi }}{6}} \right)} \right)$ for $k = 0,1,2,3,4,5$
For $k = 0$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 0 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 0 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( 0 \right) + i\sin \left( 0 \right)} \right)$
$ \Rightarrow x = 2\left( 1 \right) = 2$
For $k = 1$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 1 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 1 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{3}} \right)} \right)$
$ \Rightarrow x = 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = 1 + \sqrt 3 i$
For $k = 2$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 2 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 2 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\pi }}{3}} \right) + i\sin \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
$ \Rightarrow x = 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = - 1 + \sqrt 3 i$
For $k = 3$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 3 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 3 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \pi + i\sin \pi } \right)$
$ \Rightarrow x = 2\left( { - 1 + i\left( 0 \right)} \right)$
$ \Rightarrow x = - 2$
For $k = 4$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 4 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 4 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \dfrac{{4\pi }}{3} + i\sin \dfrac{{4\pi }}{3}} \right)$
$ \Rightarrow x = 2\left( { - \dfrac{1}{2} + i\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = - 1 - i\sqrt 3 $
For $k = 5$, we get,
$ \Rightarrow x = 2\left( {\cos \left( {\dfrac{{2\left( 5 \right)\pi }}{6}} \right) + i\sin \left( {\dfrac{{2\left( 5 \right)\pi }}{6}} \right)} \right)$
Simplifying further, we get,
$ \Rightarrow x = 2\left( {\cos \dfrac{{5\pi }}{3} + i\sin \dfrac{{5\pi }}{3}} \right)$
$ \Rightarrow x = 2\left( {\dfrac{1}{2} + i\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
$ \Rightarrow x = 1 - i\sqrt 3 $
So, all the real roots of the equation ${x^6} - 64 = 0$ are: $2$ and $ - 2$
Also, all the complex roots of the equation ${x^6} - 64 = 0$ are: $1 - i\sqrt 3 $,$ - 1 - i\sqrt 3 $,$1 + i\sqrt 3 $ and $ - 1 + i\sqrt 3 $.
So, all the roots of the equation ${x^6} - 64 = 0$are: $2$, $ - 2$, $1 - i\sqrt 3 $,$ - 1 - i\sqrt 3 $,$1 + i\sqrt 3 $ and $ - 1 + i\sqrt 3 $.
Note: The application of demoivre’s theorem makes the question a lot easier than the conventional method of finding the power of the complex number. Trigonometry is of much use when dealing with polar forms of complex numbers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

