
Find all the possible values of x such that the following equation holds:
${{x}^{2}}-6x+7=0$
Answer
592.5k+ views
Hint: This is a quadratic equation. So the Sridharacharya formula can be applied to solve this equation for x. For a quadratic equation of the form:
$a{{x}^{2}}+bx+c=0\text{ },\text{ }a\ne 0\text{ }\cdot \cdot \cdot \text{(i)}$
The roots of the equation (i) can be determined by using Sridharacharya formula as follow:
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
A quadratic equation can be solved using the Sridharacharya formula. According to this formula if a quadratic equation is of the form:
$a{{x}^{2}}+bx+c=0\text{ },\text{ }a\ne 0\text{ }\cdot \cdot \cdot \text{(i)}$
Then the roots of this equation can be determined by
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
First let us prove the Shridharacharya formula by solving equation (i).
$a{{x}^{2}}+bx+c=0$
Multiplying $a$ throughout the equation we get
$\begin{align}
& {{a}^{2}}{{x}^{2}}+abx+ac=0 \\
& \Rightarrow {{a}^{2}}{{x}^{2}}+2\dfrac{ab}{2}x+ac=0 \\
& \Rightarrow {{a}^{2}}{{x}^{2}}+2\dfrac{ab}{2}x+\dfrac{{{b}^{2}}}{4}-\dfrac{{{b}^{2}}}{4}+ac=0 \\
& \Rightarrow {{\left( ax \right)}^{2}}+2\left( ax \right)\left( \dfrac{b}{2} \right)+{{\left( \dfrac{b}{2} \right)}^{2}}=\dfrac{{{b}^{2}}}{4}-ac \\
\end{align}$
We see that LHS forms a square expression. So converting it into square form we get
$\begin{align}
& {{\left( ax+\dfrac{b}{2} \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{4} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \sqrt{\dfrac{{{b}^{2}}-4ac}{4}}=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2}\text{ }\cdots \text{(ii)} \\
\end{align}$
We know that the square root of negative numbers is not defined. So for the equation (i) to have real roots, the term inside the square root in the above expression should be non-negative. This term is called discriminant of the quadratic equation.
${{b}^{2}}-4ac\ge 0\text{ }\cdots \text{(iii)}$
Equation (iii) is a condition for equation (i) to have real roots. Also when (iii) holds then we will have two square roots, one positive and another negative.
Now solving further from equation (ii),
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Considering both the sign + and – we have two roots as:
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
In this case, there is one special case when both the roots are the same and the equation has only one distinct root. This special case occurs when
${{b}^{2}}-4ac=0$
Putting the above equation in the expression of x1 and x2 we get,
${{x}_{1}}={{x}_{2}}=\dfrac{-b}{2a}$
If ${{b}^{2}}-4ac<0$ then square root doesn’t exist over real numbers and hence no real root x of equation (i) would be possible. In this case, complex roots occur.
$\begin{align}
& {{b}^{2}}-4ac<0 \\
& \Rightarrow 4ac-{{b}^{2}}>0 \\
\end{align}$
Solving the equation for this case from equation (ii),
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{-\left( 4ac-{{b}^{2}} \right)}}{2} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{-1}\sqrt{\left( 4ac-{{b}^{2}} \right)}}{2} \\
\end{align}$
Now taking an imaginary number $i=\sqrt{-1}$ . Since $4ac-{{b}^{2}}>0$so $\sqrt{4ac-{{b}^{2}}}$exist.
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{i\sqrt{4ac-{{b}^{2}}}}{2} \\
& \Rightarrow ax=\dfrac{-b\pm i\sqrt{4ac-{{b}^{2}}}}{2} \\
& \Rightarrow x=\dfrac{-b\pm i\sqrt{4ac-{{b}^{2}}}}{2a} \\
\end{align}$
Again considering both the + and – sign we get two complex roots.
$\begin{align}
& {{x}_{1}}=\dfrac{-b-i\sqrt{4ac-{{b}^{2}}}}{2a} \\
& {{x}_{2}}=\dfrac{-b+i\sqrt{4ac-{{b}^{2}}}}{2a} \\
\end{align}$
We are given the equation as:
${{x}^{2}}-6x+7=0$
First let us check whether this equation has real roots or not.
Comparing this equation with equation (i) we get,
$a=1\text{ },\text{ }b=-6\text{ },\text{ }c=7$
Now checking the discriminant,
$\begin{align}
& {{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\left( 1 \right)\left( 7 \right) \\
& \Rightarrow {{b}^{2}}-4ac=36-28 \\
& \Rightarrow {{b}^{2}}-4ac=8\ge 0 \\
\end{align}$
We see that the discriminant is positive. So our equation has real roots. Now solving it using Shridharacharya formula we get
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow {{x}_{1}}=\dfrac{-\left( -6 \right)-\sqrt{8}}{2\cdot 1} \\
& \Rightarrow {{x}_{1}}=\dfrac{6-2\sqrt{2}}{2} \\
& \Rightarrow {{x}_{1}}=3-\sqrt{2} \\
\end{align}$
And
$\begin{align}
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow {{x}_{2}}=\dfrac{-\left( -6 \right)+\sqrt{8}}{2\cdot 1} \\
& \Rightarrow {{x}_{2}}=\dfrac{6+2\sqrt{2}}{2} \\
& \Rightarrow {{x}_{2}}=3+\sqrt{2} \\
\end{align}$
So we get the roots of the equation
${{x}^{2}}-6x+7=0$
As ${{x}_{1}}=3-\sqrt{2}\text{ , }{{\text{x}}_{2}}=3+\sqrt{2}$
Note: You can save your time by first checking whether the discriminant is negative or non-negative. If it is non-negative then only proceed to solve otherwise you can directly say that this equation has no real roots.
$a{{x}^{2}}+bx+c=0\text{ },\text{ }a\ne 0\text{ }\cdot \cdot \cdot \text{(i)}$
The roots of the equation (i) can be determined by using Sridharacharya formula as follow:
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
A quadratic equation can be solved using the Sridharacharya formula. According to this formula if a quadratic equation is of the form:
$a{{x}^{2}}+bx+c=0\text{ },\text{ }a\ne 0\text{ }\cdot \cdot \cdot \text{(i)}$
Then the roots of this equation can be determined by
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
First let us prove the Shridharacharya formula by solving equation (i).
$a{{x}^{2}}+bx+c=0$
Multiplying $a$ throughout the equation we get
$\begin{align}
& {{a}^{2}}{{x}^{2}}+abx+ac=0 \\
& \Rightarrow {{a}^{2}}{{x}^{2}}+2\dfrac{ab}{2}x+ac=0 \\
& \Rightarrow {{a}^{2}}{{x}^{2}}+2\dfrac{ab}{2}x+\dfrac{{{b}^{2}}}{4}-\dfrac{{{b}^{2}}}{4}+ac=0 \\
& \Rightarrow {{\left( ax \right)}^{2}}+2\left( ax \right)\left( \dfrac{b}{2} \right)+{{\left( \dfrac{b}{2} \right)}^{2}}=\dfrac{{{b}^{2}}}{4}-ac \\
\end{align}$
We see that LHS forms a square expression. So converting it into square form we get
$\begin{align}
& {{\left( ax+\dfrac{b}{2} \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{4} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \sqrt{\dfrac{{{b}^{2}}-4ac}{4}}=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2}\text{ }\cdots \text{(ii)} \\
\end{align}$
We know that the square root of negative numbers is not defined. So for the equation (i) to have real roots, the term inside the square root in the above expression should be non-negative. This term is called discriminant of the quadratic equation.
${{b}^{2}}-4ac\ge 0\text{ }\cdots \text{(iii)}$
Equation (iii) is a condition for equation (i) to have real roots. Also when (iii) holds then we will have two square roots, one positive and another negative.
Now solving further from equation (ii),
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Considering both the sign + and – we have two roots as:
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
In this case, there is one special case when both the roots are the same and the equation has only one distinct root. This special case occurs when
${{b}^{2}}-4ac=0$
Putting the above equation in the expression of x1 and x2 we get,
${{x}_{1}}={{x}_{2}}=\dfrac{-b}{2a}$
If ${{b}^{2}}-4ac<0$ then square root doesn’t exist over real numbers and hence no real root x of equation (i) would be possible. In this case, complex roots occur.
$\begin{align}
& {{b}^{2}}-4ac<0 \\
& \Rightarrow 4ac-{{b}^{2}}>0 \\
\end{align}$
Solving the equation for this case from equation (ii),
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{2} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{-\left( 4ac-{{b}^{2}} \right)}}{2} \\
& \Rightarrow \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{\sqrt{-1}\sqrt{\left( 4ac-{{b}^{2}} \right)}}{2} \\
\end{align}$
Now taking an imaginary number $i=\sqrt{-1}$ . Since $4ac-{{b}^{2}}>0$so $\sqrt{4ac-{{b}^{2}}}$exist.
$\begin{align}
& \left( ax+\dfrac{b}{2} \right)=\pm \dfrac{i\sqrt{4ac-{{b}^{2}}}}{2} \\
& \Rightarrow ax=\dfrac{-b\pm i\sqrt{4ac-{{b}^{2}}}}{2} \\
& \Rightarrow x=\dfrac{-b\pm i\sqrt{4ac-{{b}^{2}}}}{2a} \\
\end{align}$
Again considering both the + and – sign we get two complex roots.
$\begin{align}
& {{x}_{1}}=\dfrac{-b-i\sqrt{4ac-{{b}^{2}}}}{2a} \\
& {{x}_{2}}=\dfrac{-b+i\sqrt{4ac-{{b}^{2}}}}{2a} \\
\end{align}$
We are given the equation as:
${{x}^{2}}-6x+7=0$
First let us check whether this equation has real roots or not.
Comparing this equation with equation (i) we get,
$a=1\text{ },\text{ }b=-6\text{ },\text{ }c=7$
Now checking the discriminant,
$\begin{align}
& {{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\left( 1 \right)\left( 7 \right) \\
& \Rightarrow {{b}^{2}}-4ac=36-28 \\
& \Rightarrow {{b}^{2}}-4ac=8\ge 0 \\
\end{align}$
We see that the discriminant is positive. So our equation has real roots. Now solving it using Shridharacharya formula we get
$\begin{align}
& {{x}_{1}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow {{x}_{1}}=\dfrac{-\left( -6 \right)-\sqrt{8}}{2\cdot 1} \\
& \Rightarrow {{x}_{1}}=\dfrac{6-2\sqrt{2}}{2} \\
& \Rightarrow {{x}_{1}}=3-\sqrt{2} \\
\end{align}$
And
$\begin{align}
& {{x}_{2}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow {{x}_{2}}=\dfrac{-\left( -6 \right)+\sqrt{8}}{2\cdot 1} \\
& \Rightarrow {{x}_{2}}=\dfrac{6+2\sqrt{2}}{2} \\
& \Rightarrow {{x}_{2}}=3+\sqrt{2} \\
\end{align}$
So we get the roots of the equation
${{x}^{2}}-6x+7=0$
As ${{x}_{1}}=3-\sqrt{2}\text{ , }{{\text{x}}_{2}}=3+\sqrt{2}$
Note: You can save your time by first checking whether the discriminant is negative or non-negative. If it is non-negative then only proceed to solve otherwise you can directly say that this equation has no real roots.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

