
Find all real values of x that satisfy the following equation:
$|2x-4|+|1-x|=4-x$
Answer
617.1k+ views
Hint: First take 2 common out of absolute function operator of the first term of LHS. Then break the absolute function considering specific intervals of x one by one. Then it will form a linear equation in one variable which will be easy to solve.
Complete step-by-step answer:
We are given the equation as:
$|2x-4|+|1-x|=4-x$
We know that for any real number a and b we have
$|ab|=|a||b|$
Applying this concept in the first term of our equation with b = 2 and a = $x-2$.
$|2||x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(i)}$
We know that for any nonnegative real number a,
$|a|=a$
So applying this in equation (i) we get
$2|x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(ii)}$
Now for breaking the absolute function operator we find the values of x for each absolute function becoming 0.
$\begin{align}
& x-2=0 \\
& \Rightarrow x=2 \\
& \text{and} \\
& 1-x=0 \\
& \Rightarrow x=1 \\
\end{align}$
So there are two critical values of x.
Now considering three cases of x corresponding to two critical values
Case1: $x\le 1$
Then
$x-2\le 1-2=-1$
We know that for any real number a ,
$|a|=\left\{ \begin{array}{*{35}{l}}
a & \text{for }a\ge 0 \\
-a & \text{for }a<0 \\
\end{array} \right.$
So $|x-2|=-(x-2)=2-x$
Also, $x\le 1$
$\begin{align}
& \Rightarrow 1-x\ge 0 \\
& \Rightarrow |1-x|=1-x \\
\end{align}$
Putting simplified value in equation (ii) we get
$\begin{align}
& 2(2-x)+1-x=4-x \\
& \Rightarrow 4-2x-3=0 \\
& \Rightarrow 2x=1 \\
& \Rightarrow x=\dfrac{1}{2} \\
\end{align}$
Now, $x=\dfrac{1}{2}\le 1$. So our solution comes in the defined range. Hence $x=\dfrac{1}{2}$is the solution.
Case 2: $1\le x\le 2$
In this case,
$\begin{align}
& x-2\le 0 \\
& \Rightarrow |x-2|=-(x-2)=2-x \\
& \text{and} \\
& 1-x\le 0 \\
& \Rightarrow |1-x|=-(1-x)=x-1 \\
\end{align}$
So we get our equation as
$\begin{align}
& 2(2-x)+x-1=4-x \\
& \Rightarrow 4-2x+2x-5=0 \\
& \Rightarrow 4=5 \\
\end{align}$
It is not possible that 4 = 5. So, no value of x in this range.
Case 3: $x\ge 2$
In this case,
$\begin{align}
& x-2\ge 0 \\
& \Rightarrow |x-2|=x-2 \\
& \text{and} \\
& 1-x\le 0 \\
& \Rightarrow |1-x|=-(1-x)=x-1 \\
\end{align}$
So we get our equation as
$\begin{align}
& 2(x-2)+x-1=4-x \\
& \Rightarrow 2x-4+2x-5=0 \\
& \Rightarrow 4x=9 \\
& \Rightarrow x=\dfrac{9}{4} \\
\end{align}$
We see that $x=\dfrac{9}{4}\ge 2$. So this value of x is accepted.
Hence overall $x=\dfrac{1}{2}$ and $x=\dfrac{9}{4}$ is the solution of the given equation.
Note: This question requires breaking the modulus function and then solving the problem. Students might get wrong in identifying the critical points and then the whole solution may get wrong.
Complete step-by-step answer:
We are given the equation as:
$|2x-4|+|1-x|=4-x$
We know that for any real number a and b we have
$|ab|=|a||b|$
Applying this concept in the first term of our equation with b = 2 and a = $x-2$.
$|2||x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(i)}$
We know that for any nonnegative real number a,
$|a|=a$
So applying this in equation (i) we get
$2|x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(ii)}$
Now for breaking the absolute function operator we find the values of x for each absolute function becoming 0.
$\begin{align}
& x-2=0 \\
& \Rightarrow x=2 \\
& \text{and} \\
& 1-x=0 \\
& \Rightarrow x=1 \\
\end{align}$
So there are two critical values of x.
Now considering three cases of x corresponding to two critical values
Case1: $x\le 1$
Then
$x-2\le 1-2=-1$
We know that for any real number a ,
$|a|=\left\{ \begin{array}{*{35}{l}}
a & \text{for }a\ge 0 \\
-a & \text{for }a<0 \\
\end{array} \right.$
So $|x-2|=-(x-2)=2-x$
Also, $x\le 1$
$\begin{align}
& \Rightarrow 1-x\ge 0 \\
& \Rightarrow |1-x|=1-x \\
\end{align}$
Putting simplified value in equation (ii) we get
$\begin{align}
& 2(2-x)+1-x=4-x \\
& \Rightarrow 4-2x-3=0 \\
& \Rightarrow 2x=1 \\
& \Rightarrow x=\dfrac{1}{2} \\
\end{align}$
Now, $x=\dfrac{1}{2}\le 1$. So our solution comes in the defined range. Hence $x=\dfrac{1}{2}$is the solution.
Case 2: $1\le x\le 2$
In this case,
$\begin{align}
& x-2\le 0 \\
& \Rightarrow |x-2|=-(x-2)=2-x \\
& \text{and} \\
& 1-x\le 0 \\
& \Rightarrow |1-x|=-(1-x)=x-1 \\
\end{align}$
So we get our equation as
$\begin{align}
& 2(2-x)+x-1=4-x \\
& \Rightarrow 4-2x+2x-5=0 \\
& \Rightarrow 4=5 \\
\end{align}$
It is not possible that 4 = 5. So, no value of x in this range.
Case 3: $x\ge 2$
In this case,
$\begin{align}
& x-2\ge 0 \\
& \Rightarrow |x-2|=x-2 \\
& \text{and} \\
& 1-x\le 0 \\
& \Rightarrow |1-x|=-(1-x)=x-1 \\
\end{align}$
So we get our equation as
$\begin{align}
& 2(x-2)+x-1=4-x \\
& \Rightarrow 2x-4+2x-5=0 \\
& \Rightarrow 4x=9 \\
& \Rightarrow x=\dfrac{9}{4} \\
\end{align}$
We see that $x=\dfrac{9}{4}\ge 2$. So this value of x is accepted.
Hence overall $x=\dfrac{1}{2}$ and $x=\dfrac{9}{4}$ is the solution of the given equation.
Note: This question requires breaking the modulus function and then solving the problem. Students might get wrong in identifying the critical points and then the whole solution may get wrong.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

