
How do you find a vector parametric equation $r\left( t \right)$for the line through points $P = \left( { - 3, - 1,1} \right)$and $Q = \left( { - 8, - 4,5} \right)$. If $r\left( 6 \right) = P$ and $r\left( {10} \right) = Q$
Answer
532.5k+ views
Hint: Given the coordinates. We have to find the parametric equation for the line. First, we will determine the parametric equation at $x = 6$ and then at $x = 10$. Then, solve the equations for by eliminating one variable and solve for another variable. Later, substitute the value of the variable and solve for the variable. Then, determine the y-parametric equations by substituting the y-coordinates into the equation. Solve the equations to determine the z-parametric equations by substituting z-coordinates into the equation.
Formula used:
The general form of vector parametric equation is given by:
$r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
Where the parametric equations are
$x = t{x_v} + {x_p}$
$y = t{y_v} + {y_p}$
$z = t{z_v} + {z_p}$
Complete step by step answer:
We are given the points $P = \left( { - 3, - 1,1} \right)$ and $Q = \left( { - 8, - 4,5} \right)$. First, we will write the parametric equations for x-coordinate.
$ \Rightarrow x = t{x_v} + {x_p}$
Now, substitute $t = 6$ and $x = - 3$ into the equation.
$ \Rightarrow - 3 = 6{x_v} + {x_p}$ -----(1)
Then, substitute $t = 10$ and $x = - 8$ into the equation.
$ \Rightarrow - 8 = 10{x_v} + {x_p}$ -----(2)
Subtract the equation (1) from equation (2) to eliminate ${x_p}$.
$ \Rightarrow - 8 - \left( { - 3} \right) = 10{x_v} - 6{x_v} + {x_p} - {x_p}$
$ \Rightarrow - 5 = 4{x_v}$
$ \Rightarrow {x_v} = - \dfrac{5}{4}$
Now, substitute the value of ${x_v}$ into the equation (1), we get:
$ \Rightarrow - 3 = 6\left( { - \dfrac{5}{4}} \right) + {x_p}$
$ \Rightarrow - 3 = - \dfrac{{15}}{2} + {x_p}$
$ \Rightarrow - 3 + \dfrac{{15}}{2} = {x_p}$
$ \Rightarrow \dfrac{9}{2} = {x_p}$
Now, we will determine the y-parametric equation by substituting $t = 6$ and $y = - 1$ into the equation.
$ \Rightarrow - 1 = 6{y_v} + {y_p}$ -----(3)
Then, substitute $t = 10$ and $y = - 4$ into the equation.
$ \Rightarrow - 4 = 10{y_v} + {y_p}$ -----(4)
Subtract the equation (3) from equation (4) to eliminate ${y_p}$.
$ \Rightarrow - 4 - \left( { - 1} \right) = 10{y_v} - 6{y_v} + {y_p} - {y_p}$
$ \Rightarrow - 3 = 4{y_v}$
$ \Rightarrow {y_v} = - \dfrac{3}{4}$
Now, substitute the value of ${y_v}$ into the equation (3), we get:
$ \Rightarrow - 1 = 6\left( { - \dfrac{3}{4}} \right) + {y_p}$
$ \Rightarrow - 1 = - \dfrac{9}{2} + {y_p}$
$ \Rightarrow - 1 + \dfrac{9}{2} = {y_p}$
$ \Rightarrow \dfrac{7}{2} = {y_p}$
Now, we will determine the z-parametric equation by substituting $t = 6$ and $z = 1$ into the equation.
$ \Rightarrow 1 = 6{z_v} + {z_p}$ ----(5)
Then, substitute $t = 10$ and $z = 5$ into the equation.
$ \Rightarrow 5 = 10{z_v} + {z_p}$ -----(6)
Subtract the equation (5) from equation (6) to eliminate ${z_p}$.
$ \Rightarrow 5 - 1 = 10{z_v} - 6{z_v} + {z_p} - {z_p}$
$ \Rightarrow 4 = 4{z_v}$
$ \Rightarrow {z_v} = 1$
Now, substitute the value of ${z_v}$ into the equation (5), we get:
$ \Rightarrow 1 = 6\left( 1 \right) + {z_p}$
$ \Rightarrow 1 = 6 + {z_p}$
$ \Rightarrow 1 - 6 = {z_p}$
$ \Rightarrow - 5 = {z_p}$
Substitute the values into the general form of vector parametric equation $r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
$ \Rightarrow r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Hence, the vector parametric equation for the line is $r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Note: The vector parametric equation of the line passing through the points is determined by writing the x, y and z coordinates of the parametric equation plus the coordinates of the vector equation.
Formula used:
The general form of vector parametric equation is given by:
$r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
Where the parametric equations are
$x = t{x_v} + {x_p}$
$y = t{y_v} + {y_p}$
$z = t{z_v} + {z_p}$
Complete step by step answer:
We are given the points $P = \left( { - 3, - 1,1} \right)$ and $Q = \left( { - 8, - 4,5} \right)$. First, we will write the parametric equations for x-coordinate.
$ \Rightarrow x = t{x_v} + {x_p}$
Now, substitute $t = 6$ and $x = - 3$ into the equation.
$ \Rightarrow - 3 = 6{x_v} + {x_p}$ -----(1)
Then, substitute $t = 10$ and $x = - 8$ into the equation.
$ \Rightarrow - 8 = 10{x_v} + {x_p}$ -----(2)
Subtract the equation (1) from equation (2) to eliminate ${x_p}$.
$ \Rightarrow - 8 - \left( { - 3} \right) = 10{x_v} - 6{x_v} + {x_p} - {x_p}$
$ \Rightarrow - 5 = 4{x_v}$
$ \Rightarrow {x_v} = - \dfrac{5}{4}$
Now, substitute the value of ${x_v}$ into the equation (1), we get:
$ \Rightarrow - 3 = 6\left( { - \dfrac{5}{4}} \right) + {x_p}$
$ \Rightarrow - 3 = - \dfrac{{15}}{2} + {x_p}$
$ \Rightarrow - 3 + \dfrac{{15}}{2} = {x_p}$
$ \Rightarrow \dfrac{9}{2} = {x_p}$
Now, we will determine the y-parametric equation by substituting $t = 6$ and $y = - 1$ into the equation.
$ \Rightarrow - 1 = 6{y_v} + {y_p}$ -----(3)
Then, substitute $t = 10$ and $y = - 4$ into the equation.
$ \Rightarrow - 4 = 10{y_v} + {y_p}$ -----(4)
Subtract the equation (3) from equation (4) to eliminate ${y_p}$.
$ \Rightarrow - 4 - \left( { - 1} \right) = 10{y_v} - 6{y_v} + {y_p} - {y_p}$
$ \Rightarrow - 3 = 4{y_v}$
$ \Rightarrow {y_v} = - \dfrac{3}{4}$
Now, substitute the value of ${y_v}$ into the equation (3), we get:
$ \Rightarrow - 1 = 6\left( { - \dfrac{3}{4}} \right) + {y_p}$
$ \Rightarrow - 1 = - \dfrac{9}{2} + {y_p}$
$ \Rightarrow - 1 + \dfrac{9}{2} = {y_p}$
$ \Rightarrow \dfrac{7}{2} = {y_p}$
Now, we will determine the z-parametric equation by substituting $t = 6$ and $z = 1$ into the equation.
$ \Rightarrow 1 = 6{z_v} + {z_p}$ ----(5)
Then, substitute $t = 10$ and $z = 5$ into the equation.
$ \Rightarrow 5 = 10{z_v} + {z_p}$ -----(6)
Subtract the equation (5) from equation (6) to eliminate ${z_p}$.
$ \Rightarrow 5 - 1 = 10{z_v} - 6{z_v} + {z_p} - {z_p}$
$ \Rightarrow 4 = 4{z_v}$
$ \Rightarrow {z_v} = 1$
Now, substitute the value of ${z_v}$ into the equation (5), we get:
$ \Rightarrow 1 = 6\left( 1 \right) + {z_p}$
$ \Rightarrow 1 = 6 + {z_p}$
$ \Rightarrow 1 - 6 = {z_p}$
$ \Rightarrow - 5 = {z_p}$
Substitute the values into the general form of vector parametric equation $r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
$ \Rightarrow r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Hence, the vector parametric equation for the line is $r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Note: The vector parametric equation of the line passing through the points is determined by writing the x, y and z coordinates of the parametric equation plus the coordinates of the vector equation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

