
How do you find a vector parametric equation $r\left( t \right)$for the line through points $P = \left( { - 3, - 1,1} \right)$and $Q = \left( { - 8, - 4,5} \right)$. If $r\left( 6 \right) = P$ and $r\left( {10} \right) = Q$
Answer
547.8k+ views
Hint: Given the coordinates. We have to find the parametric equation for the line. First, we will determine the parametric equation at $x = 6$ and then at $x = 10$. Then, solve the equations for by eliminating one variable and solve for another variable. Later, substitute the value of the variable and solve for the variable. Then, determine the y-parametric equations by substituting the y-coordinates into the equation. Solve the equations to determine the z-parametric equations by substituting z-coordinates into the equation.
Formula used:
The general form of vector parametric equation is given by:
$r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
Where the parametric equations are
$x = t{x_v} + {x_p}$
$y = t{y_v} + {y_p}$
$z = t{z_v} + {z_p}$
Complete step by step answer:
We are given the points $P = \left( { - 3, - 1,1} \right)$ and $Q = \left( { - 8, - 4,5} \right)$. First, we will write the parametric equations for x-coordinate.
$ \Rightarrow x = t{x_v} + {x_p}$
Now, substitute $t = 6$ and $x = - 3$ into the equation.
$ \Rightarrow - 3 = 6{x_v} + {x_p}$ -----(1)
Then, substitute $t = 10$ and $x = - 8$ into the equation.
$ \Rightarrow - 8 = 10{x_v} + {x_p}$ -----(2)
Subtract the equation (1) from equation (2) to eliminate ${x_p}$.
$ \Rightarrow - 8 - \left( { - 3} \right) = 10{x_v} - 6{x_v} + {x_p} - {x_p}$
$ \Rightarrow - 5 = 4{x_v}$
$ \Rightarrow {x_v} = - \dfrac{5}{4}$
Now, substitute the value of ${x_v}$ into the equation (1), we get:
$ \Rightarrow - 3 = 6\left( { - \dfrac{5}{4}} \right) + {x_p}$
$ \Rightarrow - 3 = - \dfrac{{15}}{2} + {x_p}$
$ \Rightarrow - 3 + \dfrac{{15}}{2} = {x_p}$
$ \Rightarrow \dfrac{9}{2} = {x_p}$
Now, we will determine the y-parametric equation by substituting $t = 6$ and $y = - 1$ into the equation.
$ \Rightarrow - 1 = 6{y_v} + {y_p}$ -----(3)
Then, substitute $t = 10$ and $y = - 4$ into the equation.
$ \Rightarrow - 4 = 10{y_v} + {y_p}$ -----(4)
Subtract the equation (3) from equation (4) to eliminate ${y_p}$.
$ \Rightarrow - 4 - \left( { - 1} \right) = 10{y_v} - 6{y_v} + {y_p} - {y_p}$
$ \Rightarrow - 3 = 4{y_v}$
$ \Rightarrow {y_v} = - \dfrac{3}{4}$
Now, substitute the value of ${y_v}$ into the equation (3), we get:
$ \Rightarrow - 1 = 6\left( { - \dfrac{3}{4}} \right) + {y_p}$
$ \Rightarrow - 1 = - \dfrac{9}{2} + {y_p}$
$ \Rightarrow - 1 + \dfrac{9}{2} = {y_p}$
$ \Rightarrow \dfrac{7}{2} = {y_p}$
Now, we will determine the z-parametric equation by substituting $t = 6$ and $z = 1$ into the equation.
$ \Rightarrow 1 = 6{z_v} + {z_p}$ ----(5)
Then, substitute $t = 10$ and $z = 5$ into the equation.
$ \Rightarrow 5 = 10{z_v} + {z_p}$ -----(6)
Subtract the equation (5) from equation (6) to eliminate ${z_p}$.
$ \Rightarrow 5 - 1 = 10{z_v} - 6{z_v} + {z_p} - {z_p}$
$ \Rightarrow 4 = 4{z_v}$
$ \Rightarrow {z_v} = 1$
Now, substitute the value of ${z_v}$ into the equation (5), we get:
$ \Rightarrow 1 = 6\left( 1 \right) + {z_p}$
$ \Rightarrow 1 = 6 + {z_p}$
$ \Rightarrow 1 - 6 = {z_p}$
$ \Rightarrow - 5 = {z_p}$
Substitute the values into the general form of vector parametric equation $r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
$ \Rightarrow r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Hence, the vector parametric equation for the line is $r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Note: The vector parametric equation of the line passing through the points is determined by writing the x, y and z coordinates of the parametric equation plus the coordinates of the vector equation.
Formula used:
The general form of vector parametric equation is given by:
$r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
Where the parametric equations are
$x = t{x_v} + {x_p}$
$y = t{y_v} + {y_p}$
$z = t{z_v} + {z_p}$
Complete step by step answer:
We are given the points $P = \left( { - 3, - 1,1} \right)$ and $Q = \left( { - 8, - 4,5} \right)$. First, we will write the parametric equations for x-coordinate.
$ \Rightarrow x = t{x_v} + {x_p}$
Now, substitute $t = 6$ and $x = - 3$ into the equation.
$ \Rightarrow - 3 = 6{x_v} + {x_p}$ -----(1)
Then, substitute $t = 10$ and $x = - 8$ into the equation.
$ \Rightarrow - 8 = 10{x_v} + {x_p}$ -----(2)
Subtract the equation (1) from equation (2) to eliminate ${x_p}$.
$ \Rightarrow - 8 - \left( { - 3} \right) = 10{x_v} - 6{x_v} + {x_p} - {x_p}$
$ \Rightarrow - 5 = 4{x_v}$
$ \Rightarrow {x_v} = - \dfrac{5}{4}$
Now, substitute the value of ${x_v}$ into the equation (1), we get:
$ \Rightarrow - 3 = 6\left( { - \dfrac{5}{4}} \right) + {x_p}$
$ \Rightarrow - 3 = - \dfrac{{15}}{2} + {x_p}$
$ \Rightarrow - 3 + \dfrac{{15}}{2} = {x_p}$
$ \Rightarrow \dfrac{9}{2} = {x_p}$
Now, we will determine the y-parametric equation by substituting $t = 6$ and $y = - 1$ into the equation.
$ \Rightarrow - 1 = 6{y_v} + {y_p}$ -----(3)
Then, substitute $t = 10$ and $y = - 4$ into the equation.
$ \Rightarrow - 4 = 10{y_v} + {y_p}$ -----(4)
Subtract the equation (3) from equation (4) to eliminate ${y_p}$.
$ \Rightarrow - 4 - \left( { - 1} \right) = 10{y_v} - 6{y_v} + {y_p} - {y_p}$
$ \Rightarrow - 3 = 4{y_v}$
$ \Rightarrow {y_v} = - \dfrac{3}{4}$
Now, substitute the value of ${y_v}$ into the equation (3), we get:
$ \Rightarrow - 1 = 6\left( { - \dfrac{3}{4}} \right) + {y_p}$
$ \Rightarrow - 1 = - \dfrac{9}{2} + {y_p}$
$ \Rightarrow - 1 + \dfrac{9}{2} = {y_p}$
$ \Rightarrow \dfrac{7}{2} = {y_p}$
Now, we will determine the z-parametric equation by substituting $t = 6$ and $z = 1$ into the equation.
$ \Rightarrow 1 = 6{z_v} + {z_p}$ ----(5)
Then, substitute $t = 10$ and $z = 5$ into the equation.
$ \Rightarrow 5 = 10{z_v} + {z_p}$ -----(6)
Subtract the equation (5) from equation (6) to eliminate ${z_p}$.
$ \Rightarrow 5 - 1 = 10{z_v} - 6{z_v} + {z_p} - {z_p}$
$ \Rightarrow 4 = 4{z_v}$
$ \Rightarrow {z_v} = 1$
Now, substitute the value of ${z_v}$ into the equation (5), we get:
$ \Rightarrow 1 = 6\left( 1 \right) + {z_p}$
$ \Rightarrow 1 = 6 + {z_p}$
$ \Rightarrow 1 - 6 = {z_p}$
$ \Rightarrow - 5 = {z_p}$
Substitute the values into the general form of vector parametric equation $r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)$
$ \Rightarrow r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Hence, the vector parametric equation for the line is $r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)$
Note: The vector parametric equation of the line passing through the points is determined by writing the x, y and z coordinates of the parametric equation plus the coordinates of the vector equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

