
How would you find a unit vector parallel to the resultant of the vectors and ?
Answer
468.6k+ views
1 likes
Hint: Here in this question, we have to find the unit vector which is parallel to the resultant of two vectors. The vectors A and B are given. By using the formula the unit vector is determined. Where A, and B are points which are already in the question then substituting the values we obtain the required result for the question.
Complete step-by-step solution:
A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. The given vectors are and . Therefore, the resultant vector of A and B is the sum of vectors A and B.
Then the unit vector is determined by using the formula ----- (1)
The vector is determined by adding two vectors, substituting the values of A and B we get
Add the terms which are having the same unit vectors that I, j and k
On simplifying we get
Hence we have determined the resultant vectors of A and B
Now the is determined by
Therefore the unit vector is given by
Hence this is the unit vector parallel to the resultant vector AB.
Note: To the vectors the arithmetic operations are applicable. The vectors are multiplied by the two kinds one is dot product and the other one is cross product. The dot product is like multiplication itself. But in case of cross product while multiplying the terms we consider the determinant for the points or vector.
Complete step-by-step solution:
A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. The given vectors are
Then the unit vector is determined by using the formula
The vector
Add the terms which are having the same unit vectors that I, j and k
On simplifying we get
Hence we have determined the resultant vectors of A and B
Now the
Therefore the unit vector is given by
Hence this is the unit vector parallel to the resultant vector AB.
Note: To the vectors the arithmetic operations are applicable. The vectors are multiplied by the two kinds one is dot product and the other one is cross product. The dot product is like multiplication itself. But in case of cross product while multiplying the terms we consider the determinant for the points or vector.
Latest Vedantu courses for you
Grade 8 | CBSE | SCHOOL | English
Vedantu 8 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹42,330 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Find the value of the expression given below sin 30circ class 11 maths CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
