
How would you find a unit vector parallel to the resultant of the vectors \[A = 2i - 6j - 3k\] and \[B = 4i + 3j - k\]?
Answer
537.9k+ views
Hint: Here in this question, we have to find the unit vector which is parallel to the resultant of two vectors. The vectors A and B are given. By using the formula \[\hat x = \dfrac{{\overrightarrow A + \overrightarrow B }}{{||\overrightarrow A + \overrightarrow B ||}}\] the unit vector is determined. Where A, and B are points which are already in the question then substituting the values we obtain the required result for the question.
Complete step-by-step solution:
A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. The given vectors are \[A = 2i - 6j - 3k\] and \[B = 4i + 3j - k\]. Therefore, the resultant vector of A and B is the sum of vectors A and B.
Then the unit vector is determined by using the formula \[\dfrac{{\overrightarrow A + \overrightarrow B }}{{||\overrightarrow A \times \overrightarrow B ||}}\]----- (1)
The vector \[\overrightarrow A + \overrightarrow B \] is determined by adding two vectors, substituting the values of A and B we get
\[ \Rightarrow \overrightarrow A + \overrightarrow B = (2i - 6j - 3k) + (4i + 3j - k)\]
Add the terms which are having the same unit vectors that I, j and k
\[ \Rightarrow \overrightarrow A + \overrightarrow B = (2 + 4)i + ( - 6 + 3)j + ( - 3 - 1)k\]
On simplifying we get
\[ \Rightarrow \overrightarrow A + \overrightarrow B = 6i - 3j - 4k\]
Hence we have determined the resultant vectors of A and B
Now the \[\left\| {\overrightarrow A + \overrightarrow B } \right\|\] is determined by
\[
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {{{(6)}^2} + {{( - 3)}^2} + {{( - 4)}^2}} \\
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {36 + 9 + 16} \\
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {61} \\
\]
Therefore the unit vector is given by
\[\dfrac{{\overrightarrow A + \overrightarrow B }}{{||\overrightarrow A + \overrightarrow B ||}} = \left( {\dfrac{6}{{\sqrt {61} }},\dfrac{{ - 3}}{{\sqrt {61} }},\dfrac{{ - 4}}{{\sqrt {61} }}} \right)\]
Hence this is the unit vector parallel to the resultant vector AB.
Note: To the vectors the arithmetic operations are applicable. The vectors are multiplied by the two kinds one is dot product and the other one is cross product. The dot product is like multiplication itself. But in case of cross product while multiplying the terms we consider the determinant for the points or vector.
Complete step-by-step solution:
A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. The given vectors are \[A = 2i - 6j - 3k\] and \[B = 4i + 3j - k\]. Therefore, the resultant vector of A and B is the sum of vectors A and B.
Then the unit vector is determined by using the formula \[\dfrac{{\overrightarrow A + \overrightarrow B }}{{||\overrightarrow A \times \overrightarrow B ||}}\]----- (1)
The vector \[\overrightarrow A + \overrightarrow B \] is determined by adding two vectors, substituting the values of A and B we get
\[ \Rightarrow \overrightarrow A + \overrightarrow B = (2i - 6j - 3k) + (4i + 3j - k)\]
Add the terms which are having the same unit vectors that I, j and k
\[ \Rightarrow \overrightarrow A + \overrightarrow B = (2 + 4)i + ( - 6 + 3)j + ( - 3 - 1)k\]
On simplifying we get
\[ \Rightarrow \overrightarrow A + \overrightarrow B = 6i - 3j - 4k\]
Hence we have determined the resultant vectors of A and B
Now the \[\left\| {\overrightarrow A + \overrightarrow B } \right\|\] is determined by
\[
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {{{(6)}^2} + {{( - 3)}^2} + {{( - 4)}^2}} \\
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {36 + 9 + 16} \\
\Rightarrow \left\| {\overrightarrow A + \overrightarrow B } \right\| = \sqrt {61} \\
\]
Therefore the unit vector is given by
\[\dfrac{{\overrightarrow A + \overrightarrow B }}{{||\overrightarrow A + \overrightarrow B ||}} = \left( {\dfrac{6}{{\sqrt {61} }},\dfrac{{ - 3}}{{\sqrt {61} }},\dfrac{{ - 4}}{{\sqrt {61} }}} \right)\]
Hence this is the unit vector parallel to the resultant vector AB.
Note: To the vectors the arithmetic operations are applicable. The vectors are multiplied by the two kinds one is dot product and the other one is cross product. The dot product is like multiplication itself. But in case of cross product while multiplying the terms we consider the determinant for the points or vector.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

