
Find a unit vector in the direction of vector $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$.
Answer
570.3k+ views
Hint: We will calculate a unit vector in the direction of the given vector by using the formula: $\widehat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}$ where $\widehat a$ is the unit vector in direction of$\overrightarrow a $ and $\left| {\overrightarrow a } \right|$is the magnitude of $\overrightarrow a $. We will calculate the magnitude of $\overrightarrow a $by the formula: $\left| {\overrightarrow a } \right|$= $\sqrt {{x^2} + {y^2} + {z^2}} $ when $\overrightarrow a = x\widehat i + y\widehat j + z\widehat k$.
Complete step-by-step answer:
We are given a vector $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$.
We are required to find a unit vector in the direction of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$.
We will first calculate the magnitude of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$by the formula: $\left| {\overrightarrow a } \right|$= $\sqrt {{x^2} + {y^2} + {z^2}} $
Here, x = 2, y = 3 and z = 6, substituting them in the formula of the magnitude, we get
$
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{2^2} + {3^2} + {6^2}} \\
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {4 + 9 + 36} \\
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {49} = 7 \\
$
Now, the relation of the unit vector is given by: $\widehat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}$ where $\widehat a$ is the unit vector in direction of$\overrightarrow a $ and $\left| {\overrightarrow a } \right|$is the magnitude of $\overrightarrow a $.
Substituting the values, we get
$
\Rightarrow \widehat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} \\
\Rightarrow \widehat a = \dfrac{{2\widehat i + 3\widehat j + 6\widehat k}}{7} \\
$
We can write this equation as:
$ \Rightarrow \widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$
Therefore, the required unit vector in the direction of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$is found to be: $\widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$
Note: In this question, you may get confused in the formula used and the calculation of the magnitude of vector a. Put the correct values of the vector and its magnitude to calculate the unit vector. You can only write the condensed form as there is no compulsion to write it as $\widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$. This is just for the simplicity of the vector components.
Complete step-by-step answer:
We are given a vector $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$.
We are required to find a unit vector in the direction of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$.
We will first calculate the magnitude of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$by the formula: $\left| {\overrightarrow a } \right|$= $\sqrt {{x^2} + {y^2} + {z^2}} $
Here, x = 2, y = 3 and z = 6, substituting them in the formula of the magnitude, we get
$
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{2^2} + {3^2} + {6^2}} \\
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {4 + 9 + 36} \\
\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {49} = 7 \\
$
Now, the relation of the unit vector is given by: $\widehat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}$ where $\widehat a$ is the unit vector in direction of$\overrightarrow a $ and $\left| {\overrightarrow a } \right|$is the magnitude of $\overrightarrow a $.
Substituting the values, we get
$
\Rightarrow \widehat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} \\
\Rightarrow \widehat a = \dfrac{{2\widehat i + 3\widehat j + 6\widehat k}}{7} \\
$
We can write this equation as:
$ \Rightarrow \widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$
Therefore, the required unit vector in the direction of $\overrightarrow a = 2\widehat i + 3\widehat j + 6\widehat k$is found to be: $\widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$
Note: In this question, you may get confused in the formula used and the calculation of the magnitude of vector a. Put the correct values of the vector and its magnitude to calculate the unit vector. You can only write the condensed form as there is no compulsion to write it as $\widehat a = \dfrac{2}{7}\widehat i + \dfrac{3}{7}\widehat j + \dfrac{6}{7}\widehat k$. This is just for the simplicity of the vector components.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

