
How do you find a) u+v, b) u-v, c) 2u-3v given $u=\left\langle 2,3 \right\rangle ,v=\left\langle 4,0 \right\rangle $ ?
Answer
525.3k+ views
Hint: To find $u+v$ , we will have to add the corresponding values. If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u+v=\left\langle {{x}_{1}}+{{x}_{2}},{{y}_{1}}+{{y}_{2}} \right\rangle $ . Similarly, we can find the value of $u-v$ . If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u-v=\left\langle {{x}_{1}}-{{x}_{2}},{{y}_{1}}-{{y}_{2}} \right\rangle $ . To find the value of $2u-3v$ , we will have to multiply 2 with $u=\left\langle 2,3 \right\rangle $ and 3 with $v=\left\langle 4,0 \right\rangle $ and then take the difference.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $au=a\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle a{{x}_{1}},a{{y}_{1}} \right\rangle $ .
Complete step-by-step solution:
We are given that $u=\left\langle 2,3 \right\rangle ,v=\left\langle 4,0 \right\rangle $ . Let us move to the first part of the question.
a) To find $u+v$ , we will have to add the corresponding values.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u+v=\left\langle {{x}_{1}}+{{x}_{2}},{{y}_{1}}+{{y}_{2}} \right\rangle $
Therefore, we can write
$u+v=\left\langle 2+4,3+0 \right\rangle $
Let us now add the values.
$u+v=\left\langle 6,3 \right\rangle $
b) Let us now evaluate $u-v$ . We will have to take the difference of the corresponding values.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u-v=\left\langle {{x}_{1}}-{{x}_{2}},{{y}_{1}}-{{y}_{2}} \right\rangle $ .
Therefore, we can write
$u-v=\left\langle 2-4,3-0 \right\rangle $
Let us now take the difference of the values.
$u-v=\left\langle -2,3 \right\rangle $
c) To find the value of $2u-3v$ , we will have to multiply 2 with $u=\left\langle 2,3 \right\rangle $ and 3 with $v=\left\langle 4,0 \right\rangle $ and then take the difference.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $au=a\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle a{{x}_{1}},a{{y}_{1}} \right\rangle $ .
Hence, the value of $2u-3v$ can be written as
$\begin{align}
& 2u-3v=2\left\langle 2,3 \right\rangle -3\left\langle 4,0 \right\rangle \\
& =\left\langle 4,6 \right\rangle -\left\langle 12,0 \right\rangle \\
& =\left\langle 4-12,6-0 \right\rangle \\
& =\left\langle -8,6 \right\rangle \\
\end{align}$
Hence the answer is a) $u+v=\left\langle 6,3 \right\rangle $ , b) $u-v=\left\langle -2,3 \right\rangle $ , c) $2u-3v=\left\langle -8,6 \right\rangle $
Note: Students have a chance of making mistakes when finding $u-v$ . They may write $u-v=\left\langle {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}} \right\rangle $ . You can also find the value of say, $\dfrac{u}{2}$ , similar to 2u except that here you will have to divide u by 2, that is, if $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $\dfrac{u}{2}=\dfrac{1}{2}\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle \dfrac{{{x}_{1}}}{2},\dfrac{{{y}_{1}}}{2} \right\rangle $ .
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $au=a\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle a{{x}_{1}},a{{y}_{1}} \right\rangle $ .
Complete step-by-step solution:
We are given that $u=\left\langle 2,3 \right\rangle ,v=\left\langle 4,0 \right\rangle $ . Let us move to the first part of the question.
a) To find $u+v$ , we will have to add the corresponding values.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u+v=\left\langle {{x}_{1}}+{{x}_{2}},{{y}_{1}}+{{y}_{2}} \right\rangle $
Therefore, we can write
$u+v=\left\langle 2+4,3+0 \right\rangle $
Let us now add the values.
$u+v=\left\langle 6,3 \right\rangle $
b) Let us now evaluate $u-v$ . We will have to take the difference of the corresponding values.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle ,v=\left\langle {{x}_{2}},{{y}_{2}} \right\rangle $ then $u-v=\left\langle {{x}_{1}}-{{x}_{2}},{{y}_{1}}-{{y}_{2}} \right\rangle $ .
Therefore, we can write
$u-v=\left\langle 2-4,3-0 \right\rangle $
Let us now take the difference of the values.
$u-v=\left\langle -2,3 \right\rangle $
c) To find the value of $2u-3v$ , we will have to multiply 2 with $u=\left\langle 2,3 \right\rangle $ and 3 with $v=\left\langle 4,0 \right\rangle $ and then take the difference.
If $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $au=a\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle a{{x}_{1}},a{{y}_{1}} \right\rangle $ .
Hence, the value of $2u-3v$ can be written as
$\begin{align}
& 2u-3v=2\left\langle 2,3 \right\rangle -3\left\langle 4,0 \right\rangle \\
& =\left\langle 4,6 \right\rangle -\left\langle 12,0 \right\rangle \\
& =\left\langle 4-12,6-0 \right\rangle \\
& =\left\langle -8,6 \right\rangle \\
\end{align}$
Hence the answer is a) $u+v=\left\langle 6,3 \right\rangle $ , b) $u-v=\left\langle -2,3 \right\rangle $ , c) $2u-3v=\left\langle -8,6 \right\rangle $
Note: Students have a chance of making mistakes when finding $u-v$ . They may write $u-v=\left\langle {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}} \right\rangle $ . You can also find the value of say, $\dfrac{u}{2}$ , similar to 2u except that here you will have to divide u by 2, that is, if $u=\left\langle {{x}_{1}},{{y}_{1}} \right\rangle $ , then $\dfrac{u}{2}=\dfrac{1}{2}\left\langle {{x}_{1}},{{y}_{1}} \right\rangle =\left\langle \dfrac{{{x}_{1}}}{2},\dfrac{{{y}_{1}}}{2} \right\rangle $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?


